




The Art of Java

Herbert Schildt, James Holmes

McGraw-Hill/Osborne

New York Chicago San Francisco

Lisbon London Madrid Mexico City Milan

New Delhi San Juan Seoul Singapore Sydney Toronto

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /
Blind Folio i

P:\010Comp\ApDev\971-3\fm.vp
Tuesday, July 08, 2003 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



McGraw-Hill/Osborne
2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please contact

McGraw-Hill/Osborne at the above address. For information on translations or book distributors

outside the U.S.A., please see the International Contact Information page immediately following the

index of this book.

The Art of Java

Copyright © 2003 by The McGraw-Hill Companies. All rights reserved. Printed in the United States

of America. Except as permitted under the Copyright Act of 1976, no part of this publication may be

reproduced or distributed in any form or by any means, or stored in a database or retrieval system,

without the prior written permission of publisher, with the exception that the program listings may be

entered, stored, and executed in a computer system, but they may not be reproduced for publication.

1234567890 FGR FGR 019876543

ISBN 0-07-222971-3

Publisher Brandon A. Nordin

Vice President & Associate Publisher Scott Rogers

Editorial Director Wendy Rinaldi

Project Editor Jennifer Malnick

Acquisitions Coordinator Athena Honore

Technical Editor James Holmes

Copy Editor Emily Rader

Proofreader Emily Hsuan

Indexer Sheryl Schildt

Composition Tara A. Davis, Lucie Ericksen

Illustrators Kathleen Fay Edwards, Melinda Moore Lytle, Lyssa Wald

Series Designer Roberta Steele

Cover Designer Jeff Weeks

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be reliable. However, because of the possibility of

human or mechanical error by our sources, McGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does not guarantee the accuracy,

adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use

of such information.

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /
Blind Folio ii

P:\010Comp\ApDev\971-3\fm.vp
Tuesday, July 08, 2003 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Contents
Preface .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . ix

Chapter 1 The Genius of Java .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1
Simple Types and Objects: The Right Balance .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2
Memory Management Through Garbage Collection .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
A Wonderfully Simple Multithreading Model .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4
Fully Integrated Exceptions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5
Streamlined Support for Polymorphism .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5
Portability and Security Through Bytecode .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6
The Richness of the Java API .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6
The Applet .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7
The Continuing Revolution .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8

Chapter 2 A Recursive-Descent Expression Parser .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
Expressions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10
Parsing Expressions: The Problem .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11
Parsing an Expression .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12
Dissecting an Expression .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
A Simple Expression Parser .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

Understanding the Parser .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24
Adding Variables to the Parser .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25
Syntax Checking in a Recursive-Descent Parser .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35
A Calculator Applet .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36
Some Things to Try .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38

Chapter 3 Implementing Language Interpreters in Java .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39
What Computer Language to Interpret? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 40
An Overview of the Interpreter .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42
The Small BASIC Interpreter .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42
The Small BASIC Expression Parser .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64

Small BASIC Expressions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64
Small BASIC Tokens .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 65

The Interpreter .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 70
The InterpreterException Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 70
The SBasic Constructor .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 70

iii

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Front Matter

P:\010Comp\ApDev\971-3\fm.vp
Tuesday, July 08, 2003 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The Keywords .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 72
The run( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73
The sbInterp( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 74
Assignment .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 75
The PRINT Statement .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 76
The INPUT Statement .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 78
The GOTO Statement .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 79
The IF Statement .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 82
The FOR Loop .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 82
The GOSUB .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 85
The END Statement .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 87

Using Small BASIC .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 87
More Small BASIC Sample Programs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 88

Enhancing and Expanding the Interpreter .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 90
Creating Your Own Computer Language .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 90

Chapter 4 Creating a Download Manager in Java .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
Understanding Internet Downloads .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92
An Overview of the Download Manager .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 93
The Download Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 94

The Download Variables .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98
The Download Constructor .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98
The download( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98
The run( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99
The stateChanged( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 102
Action and Accessor Methods .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 103

The ProgressRenderer Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 103
The DownloadsTableModel Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 104

The addDownload( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 106
The clearDownload( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 107
The getColumnClass( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 107
The getValueAt( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108
The update( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108

The DownloadManager Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 109
The DownloadManager Variables .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 115
The DownloadManager Constructor .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 115
The verifyUrl( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 116
The tableSelectionChanged( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 117
The updateButtons( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 117
Handling Action Events .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 119

Compiling and Running the Download Manager .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 119
Enhancing the Download Manager .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120

i v T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Front Matter

P:\010Comp\ApDev\971-3\fm.vp
Tuesday, July 08, 2003 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Chapter 5 Implementing an E-mail Client in Java .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121
E-mail Behind the Scenes .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 122

POP3 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123
IMAP .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123
SMTP .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123
The General Procedure for Sending and Receiving E-mail .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123

The JavaMail API .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 124
An Overview of Using JavaMail .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 124

A Simple E-mail Client .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 125
The ConnectDialog Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 126
The DownloadingDialog Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132
The MessageDialog Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134
The MessagesTableModel Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 141
The EmailClient Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 145

Compiling and Running the E-mail Client .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 163
Expanding Beyond the Basic E-mail Client .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 165

Chapter 6 Crawling the Web with Java .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 167
Fundamentals of a Web Crawler .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 168
Adhering to the Robot Protocol .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 169
An Overview of the Search Crawler .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 171
The SearchCrawler Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 172

The SearchCrawler Variables .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 190
The SearchCrawler Constructor .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 190
The actionSearch( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 191
The search( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 193
The showError( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 196
The updateStats( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 196
The addMatch( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197
The verifyUrl( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198
The isRobotAllowed( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 199
The downloadPage( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202
The removeWwwFromUrl( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 203
The retrieveLinks( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 203
The searchStringMatches( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 210
The crawl( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 211

Compiling and Running the Search Web Crawler .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 214
Web Crawler Ideas .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 215

Chapter 7 Rendering HTML with Java .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 217
Rendering HTML with JEditorPane .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 218
Handling Hyperlink Events .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 219
Creating a Mini Web Browser .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 220

The MiniBrowser Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 221

C o n t e n t s v

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Front Matter

P:\010Comp\ApDev\971-3\fm.vp
Tuesday, July 08, 2003 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The MiniBrowser Variables .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 226
The MiniBrowser Constructor .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 227
The actionBack( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 227
The actionForward( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 228
The actionGo( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 228
The showError( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 229
The verifyUrl( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 229
The showPage( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 230
The updateButtons( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 232
The hyperlinkUpdate( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 232

Compiling and Running the Mini Web Browser .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 233
HTML Renderer Possibilities .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 234

Chapter 8 Statistics, Graphing, and Java .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 235
Samples, Populations, Distributions, and Variables .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 236
The Basic Statistics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 237

The Mean .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 237
The Median .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 238
The Mode .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 239

Variance and Standard Deviation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 240
The Regression Equation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 242

The Correlation Coefficient .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 243
The Entire Stats Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 246
Graphing Data .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 250

Scaling Data .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 250
The Graphs Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 251
The Graphs final and Instance Variables .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 255
The Graphs Constructor .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 257
The paint( ) method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 258
The bargraph( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 262
The scatter( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 262
The regplot( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 263

A Statistics Application .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 263
The StatsWin Constructor .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 268
The itemStateChanged( ) Handler .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 269
The actionPerformed( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 270
The shutdown( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 270
The createMenu( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 271
The DataWin Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 271
Putting Together the Pieces .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 272

Creating a Simple Statistical Applet .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 274
Some Things to Try .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 276

v i T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Front Matter

P:\010Comp\ApDev\971-3\fm.vp
Tuesday, July 08, 2003 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Chapter 9 Financial Applets and Servlets .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 277
Finding the Payments for a Loan .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 278

The RegPay Fields .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 283
The init( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 283
The actionPerformed( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 286
The paint( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 286
The compute( ) Method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 287

Finding the Future Value of an Investment .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 287
Finding the Initial Investment Required to Achieve a Future Value .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 292
Finding the Initial Investment Needed for a Desired Annuity .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 296
Finding the Maximum Annuity for a Given Investment .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 301
Finding the Remaining Balance on a Loan .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 305
Creating Financial Servlets .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 310

Using Tomcat .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 310
Converting the RegPay Applet into a Servlet .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 311
The RegPayS Servlet .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 311

Some Things to Try .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 316

Chapter 10 AI-Based Problem Solving .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 317
Representation and Terminology .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 318
Combinatorial Explosions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 320
Search Techniques .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 322

Evaluating a Search .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 322
The Problem .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 322

A Graphic Representation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 323
The FlightInfo Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 325
The Depth-First Search .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 325

An Analysis of the Depth-First Search .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 336
The Breadth-First Search .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 336

An Analysis of the Breadth-First Search .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 338
Adding Heuristics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 339

The Hill-Climbing Search .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 340
An Analysis of Hill Climbing .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 345
The Least-Cost Search .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 346
An Analysis of the Least-Cost Search .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 347

Finding Multiple Solutions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 348
Path Removal .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 349
Node Removal .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 350

Finding the “Optimal” Solution .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 356
Back to the Lost Keys .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 361

Index .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 367

C o n t e n t s v i i

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Front Matter

P:\010Comp\ApDev\971-3\fm.vp
Tuesday, July 08, 2003 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



About the Authors
Herbert Schildt is a leading authority on the Java, C, C++, and C# languages, and is a

master Windows programmer. His programming books have sold more than three million

copies worldwide and have been translated into all major foreign languages. He is the author

of numerous bestsellers, including Java 2: The Complete Reference, Java 2: A Beginner’s

Guide, Java 2 Programmer’s Reference, C++: The Complete Reference, C: The Complete

Reference, and C#: The Complete Reference. Schildt holds a master’s degree in computer

science from the University of Illinois. He can be reached at his consulting office at (217)

586-4683.

James Holmes is a recognized leader in Java programming. He was named 2002 Oracle

Magazine Java Developer of the Year and is a Committer on the Jakarta Struts open source

project. He is currently an independent Java consultant, Sun Certified Java Programmer,

and Sun Certified Web Component Developer. James can be reached via e-mail at james@

jamesholmes.com. You can also visit his Web site at http://www.JamesHolmes.com.

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /
Blind Folio viii

P:\010Comp\ApDev\971-3\fm.vp
Tuesday, July 08, 2003 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Preface
by Herbert Schildt

B
eginning in 1991 at Sun Microsystems, James Gosling, along with Patrick Naughton,

Chris Warth, Ed Frank, and Mike Sheridan, began work on a new language that

would eventually rock the foundations of programming. Originally called Oak,

this new language was renamed Java in 1995—and computing hasn’t been the same since.

Java changed the course of programming in two important ways. First, Java incorporated

features that facilitated the creation of Internet-enabled applications. Thus, Java was the world’s

first truly Internet-ready language. Second, Java advanced the state of the art in computer

language design. For example, it redefined the object paradigm, streamlined exceptions, fully

integrated multithreading into the language, and created a portable object code called bytecode

that enabled programs to run on a variety of different platforms.

Java’s importance to computing, therefore, lies firmly on two pillars: its built-in support

for the Internet, and its advances in computer language design. Either one of these would

have made Java a good language, but it is the combination that made Java a great language

and ensured its place in computing history.

This book shows some of the reasons why Java is such an extraordinary language.

What’s Inside
This book is different from most other books on Java. Whereas other books teach the basics

of the language, this book shows how to apply it to some of computing’s most interesting,

useful, and, at times, mysterious programming tasks. In the process, it displays the power,

versatility, and elegance of the Java language. Thus, it is through the art of Java that the artistry

of Java’s design is displayed.

As you might expect, several of the applications, such as the download manager in Chapter 4

or the e-mail subsystem in Chapter 5, relate directly to the Internet. However, many of the

chapters develop code that illustrates the expressiveness of Java independently of the Internet.

For example, the language interpreter in Chapter 3, or the AI-based search routines in Chapter 10,

are what we call “pure code” examples. Neither of these applications relies on the Internet or

uses a GUI interface. They are the type of code that in the past one might have expected to find

written in C++. The ease by which these types of programs can be written in Java demonstrates

the versatility and agility of the language.

ix

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Front Matter

P:\010Comp\ApDev\971-3\fm.vp
Tuesday, July 08, 2003 9:09:07 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Each chapter develops code that you can use as-is, without changes. For example, the

expression parser in Chapter 2 makes an excellent addition to many applications. However,

the real benefits result when you use the applications as starting points for your own

development. For example, the Web crawler developed in Chapter 7 can be adapted for use

as a Web-site archiver or broken-link detector. In general, think of the various programs and

subsystems as launching pads for your own projects.

Knowledge of Java Is Assumed
This book assumes that you have a solid grounding in the fundamentals of the Java language.

You should be able to create, compile, and run Java programs. You should be able to use the

most common parts of the Java API, handle exceptions, and create a multihreaded program.

Thus, this book assumes that you have the skills that one would acquire in a first course on Java.

If you need to refresh or enhance your basic knowledge, I recommend the following

books:

� Java 2: A Beginner’s Guide

� Java 2: The Complete Reference

Both are published by McGraw-Hill/Osborne.

A Team Effort
I have been writing about programming for many years now and I seldom work with a coauthor.

However, this book is a bit of an exception. Because of a rather unexpected but happy turn

of events, I was able to team up with one of the brightest new talents in computing: James

Holmes. James is an outstanding programmer with several impressive accomplishments,

including being Oracle’s Java Developer of the Year, and being a Committer for the Jarkarta

Struts project. Because of James’ unique knowledge of Web-based programming, I thought that

it would be great if he could contribute several chapters to this book—fortunately, I was able

to convince him to do so. As a result, James wrote chapters 4, 5, 6, and 7, which contain the most

Internet-intensive applications. His contributions added greatly to the success of this project.

James is now working on an in-depth book about Struts called Struts: The Complete

Reference, which will be available by the end of 2003.

Don’t Forget: Code on the Web
Remember, the source code for all of the examples and projects in this book is available free

of charge on the Web at www.osborne.com.

x T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Front Matter

P:\010Comp\ApDev\971-3\fm.vp
Tuesday, July 08, 2003 9:09:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



More From Herb Schildt
The Art of Java is just one in a series of Herb Schildt programming books. Here are some

others that you will find of interest.

To learn more about Java programming, we recommend the following:

� Java 2: The Complete Reference

� Java 2: A Beginner’s Guide

� Java 2: Programmer’s Reference

To learn about C++, you will find these books especially helpful:

� C++: The Complete Reference

� C++: A Beginner’s Guide

� Teach Yourself C++

� C++ From the Ground Up

� STL Programming From the Ground Up

To learn about C#, we suggest the following books:

� C#: A Beginner’s Guide

� C#: The Complete Reference

If you want to learn more about the C language, the foundation of all modern

programming, then the following titles will be of interest:

� C: The Complete Reference

� Teach Yourself C

More From James Holmes
To learn about Struts, the open-source framework for Web development, we recommend the

following book by James Holmes:

� Struts: The Complete Reference

P r e f a c e x i

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Front Matter

P:\010Comp\ApDev\971-3\fm.vp
Tuesday, July 08, 2003 9:09:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



This page intentionally left blank 



CHAPTER

1
The Genius of Java

By Herb Schildt and James Holmes

1

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /



History in the large view is mirrored on a smaller scale by the history of programming.

Just as the first societies sprang from simple beginnings, so too did programming.

Just as great civilizations rose, flourished, and declined, so too have programming

languages. Yet, throughout the rise and fall of nations, mankind progressed. In similar

fashion, as each new language replaced its predecessor, the ongoing refinement of programming

proceeded. Throughout history, there have been pivotal events, such as the fall of the Roman

Empire, the invasion of Britain in 1066, or the first nuclear explosion, which transformed the

world. The same is true for programming languages, albeit on a smaller scale. For example,

the invention of FORTRAN changed forever the way that computers would be programmed.

Another such pivotal event was the creation of Java.

Java is the milestone that marks the beginning of programming’s Internet age. Designed

expressly for creating applications that would run anywhere there was an Internet connection,

Java’s “write once, run anywhere” philosophy defined the new programming paradigm. What

Gosling, et al., initially saw as the solution to a relatively small class of problems became a

force that defined the programming landscape for the next generation of programmers. Java

so fundamentally altered how we thought about programming that the history of computer

languages can be divided into two eras: Before Java and After Java.

Programmers in the Before Java world created programs that ran on a stand-alone machine.

Programmers in the After Java world create programs for a highly distributed, networked

environment. No longer does a programmer think in terms of a single computer. Instead,

the network is the computer and today we programmers think in terms of servers, clients,

and hosts.

Although the development of Java was driven by the needs of the Internet, Java is not simply

an “Internet language.” Rather, it is a full-featured, general-purpose programming language

designed for the modern, networked world. This means that Java is suitable for nearly all types

of programming. Although sometimes overshadowed by its networking capabilities, Java

also incorporated many innovative features that advanced the art of programming. These

innovations still ripple through computing today. For example, several aspects of C# are

modeled on elements first mainstreamed by Java.

Throughout this book we will demonstrate the wide-ranging capabilities of Java by applying

it to a varied cross section of applications. Some of the applications demonstrate the power of

the language, independent of its networking attributes. We call these “pure code” examples

because they show the expressiveness of the Java syntax and design philosophy. Others illustrate

the ease with which sophisticated networked programs can be developed using the Java

language and its API classes. Collectively, the applications show the power and scope of Java.

Before we begin our exploration of Java, we will take some time in this first chapter to

point out several of the features that make it a remarkable programming language. These are

features that reflect what we call the “genius of Java.”

Simple Types and Objects: The Right Balance
One of the greatest challenges facing a designer of an object-oriented computer language is

how to handle the object vs. simple type dilemma. Here is the problem. From a conceptually

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 1

2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 1

P:\010Comp\ApDev\971-3\ch01.vp
Monday, July 07, 2003 10:02:28 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



pure point of view, every data type should be an object, and every type should descend from a

universal parent object. This makes all data types work the same, with each sharing a common

set of inherited traits. The trouble is that making the simple types, such as int or double, into

objects can cause a decrease in performance because of the added overhead incurred by the

object mechanism. Because the simple types are often used to control loops and conditional

statements, this extra overhead would have wide-ranging, negative consequences. The trick

is to find the right balance between the “everything is an object” desire and the “performance

counts” reality.

Java solves the object, simple type problem in an elegant manner. First, it defines eight

simple types: byte, short, int, long, char, float, double, and boolean. These types translate

directly into binary values. Thus, a variable of type int can be operated on directly by the

CPU without any added overhead. The simple types in Java are as fast and efficient as

they are in any other language. Therefore, a for loop controlled by an int runs at full speed,

unencumbered by any object-related issues.

Aside from the simple types, all other types in Java are objects that inherit the universal

superclass Object. Thus, all other types share inherited functionality. For example, all objects

have a toString( ) method because toString( ) is a method defined by Object.

Because simple types are not objects, Java is free to treat objects and nonobjects a bit

differently. This is where the real genius of Java’s design becomes apparent. In Java, all objects

are accessed through a reference, rather than directly, as is the case for the simple types. Thus,

your program never operates on an object directly. By using this approach, several benefits

follow, not the least of which is garbage collection. Because all objects are accessed via a

reference, garbage collection can be efficiently implemented: when there is no reference to

an object, it can be recycled. Another benefit is that an object reference of type Object can

refer to any object in the system.

Of course, accessing every object through a reference adds overhead. The reason is that

a reference is, essentially, an address (i.e., a pointer). Thus, every object access occurs

indirectly, through that address. Although modern CPUs handle indirect accesses efficiently,

indirect accesses are not as fast as operating directly on the data itself, as is the case with

the simple types.

Although the simple types are quite efficient, there are still times when an object equivalent

of a simple type is needed. For example, you might want to create a list of integers at runtime

and have those integers recycled (garbage collected) when no longer needed. To handle this

type of situation, Java defines the simple type wrappers, such as Integer and Double. These

wrappers enable the simple types to participate in the object hierarchy when necessary.

Java’s resolution to the object vs. simple type problem captures the right balance. It allows

efficient programs to be written, but at the same time it allows the object model to be implemented

without concern about negatively impacting the performance of the simple types.

Memory Management Through Garbage Collection
Garbage collection as a memory management technique has been around a long time, but in

Java it took on a new life. In languages such as C++, memory must be managed manually,

with the programmer explicitly releasing unused objects. This is a source of problems because

C h a p t e r 1 : T h e G e n i u s o f J a v a 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 1

P:\010Comp\ApDev\971-3\ch01.vp
Monday, July 07, 2003 10:02:28 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



it is common to forget to release a resource after it is no longer needed, or to release a

resource that is still being used. Java prevents these problems by managing memory for you.

This can be done in an efficient manner because all objects in Java are accessed through a

reference. Thus, when the garbage collector finds an object to which there is no reference, it

knows that the object is unused and can be recycled. Had Java allowed objects to be operated

on directly (in a fashion similar to the simple types), then such an efficient means of garbage

collection would not have been possible.

Java’s use of garbage collection reflects the philosophy of Java in general. The Java designers

took great pains to create a language that would prevent some of the problems typical of other

programming languages. By using garbage collection, it is not possible for the programmer

to forget to release a resource or to mistakenly release a resource that is still in use. Thus,

garbage collection heads off an entire class of problems.

A Wonderfully Simple Multithreading Model
Java’s designers saw early on that the future of programming involved language-level support

for multithreaded multitasking. Recall that there are two basic types of multitasking: process-

based and thread-based. In process-based multitasking, the smallest schedulable unit is a process.

A process is, essentially, a program that is executing. Thus, process-based multitasking is the

feature that allows a computer to run two or more programs at the same time. In thread-based

multitasking, a thread is the smallest schedulable unit. A thread defines a path of execution

within a program. Thus, one process can contain two or more threads of execution, and

a multithreaded program can have two or more parts of itself executing simultaneously.

Although process-based multitasking is mostly a function of the operating system, thread-

based multitasking benefits greatly from language-level support. For example, C++, which

has no built-in support for multithreaded programming, must rely completely on operating

system functions to handle multithreading. This means that to create, begin, synchronize,

and end threads requires numerous calls to the operating system. As a result, multithreaded

code in C++ is not portable. It also makes multithreading unwieldy in a C++ program.

Because Java builds in support for multithreading, much of what must be done manually

in other languages is handled automatically in Java. One of the most elegant parts of Java’s

multithreading model is its approach to synchronization. Synchronization is based on two

innovative features. First, in Java, all objects have built-in monitors that act as mutually

exclusive locks. Only one thread can own a monitor at a given time. The locking feature is

turned on by modifying a method with the synchronized keyword. When a synchronized

method is called, the object is locked and other threads wanting access to the object must wait.

The second part of Java’s support of synchronization is found in Object, the universal

superclass of all other classes. Object declares the following synchronization methods:

wait( ), notify( ), and notifyAll( ). These methods support interthread communication. Thus,

all objects have built-in support for interthread communication. When used in combination

with a synchronized method, these methods allow a high-level of control over the way

threads interact.

By making multithreading an easy-to-use, built-in part of the language, Java changed the

way that we thought about the fundamental architecture of a program. Before Java, most

4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 1ApDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 1

P:\010Comp\ApDev\971-3\ch01.vp
Monday, July 07, 2003 10:02:28 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



programmers conceptualized programs as monolithic structures that had a single path of

execution. After Java, we think of programs as collections of parallel tasks that interact with

one another. This change to parallelism has had a wide-ranging effect on computing, but

perhaps its greatest impact has been to facilitate the use of software components.

Fully Integrated Exceptions
The conceptual framework for exceptions predates Java. So, too, does the incorporation of

exceptions into other programming languages. For instance, exceptions were added to C++

several years before Java was created. What makes Java’s approach to exceptions important

is that they were part of the original design. They were not added after the fact. Exceptions

are fully integrated into Java and form one of its foundational features.

A key aspect of Java’s exception mechanism is that its use is not optional. In Java, handling

errors through the use of exceptions is the rule. This differs from C++, for example, in which

exceptions are supported but are not fully integrated into the entire programming environment.

Consider the common situations of opening or reading from a file. In Java, when an error

occurs during one of these operations, an exception is thrown. In C++, the methods that open

or read from a file report an error by returning a special error code. Because C++ did not

originally support exceptions, its library still relies on error return codes rather than exceptions,

and your program must constantly check for possible errors manually. In Java, you simply

wrap the file-handling code within a try/catch block. Any errors will automatically be caught.

Streamlined Support for Polymorphism
Polymorphism is the attribute of object-oriented programming that allows one interface to be

used by multiple methods. Java supports polymorphism with a variety of features, but two stand

out. The first is the fact that every method (other than one marked final) can be overridden by

a subclass. The second is the interface keyword. Let’s examine each a bit closer.

Because methods in a superclass can be overridden by those in a derived class, it’s trivially

easy to create class hierarchies in which subclasses are specializations of the superclass. Recall

that a superclass reference can be used to refer to any subclass of that superclass. Furthermore,

a call to a method on a subclass object, through a superclass reference, automatically executes

the overridden version of that method. Thus, a superclass can define the form of an object

and provide a default implementation. This default implementation can then be customized

by a subclass to better meet the needs of a specific situation. Thus, the same interface, in this

case the one defined by the superclass, can be the basis for multiple implementations.

Of course, Java takes the concept of “one interface, multiple methods” a step further. It

defines the interface keyword, which allows you to fully separate a class’ methods from their

implementations. Although an interface is abstract, you can still declare a reference of

an interface type. This reference can then be used to refer to any object that implements

the interface. This is a very powerful concept because it streamlines and facilitates the use

of polymorphism. As long as a class implements an interface, an object of that class can be

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 1

C h a p t e r 1 : T h e G e n i u s o f J a v a 5

P:\010Comp\ApDev\971-3\ch01.vp
Monday, July 07, 2003 10:02:29 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



used by any code that requires the functionality provided by the interface. For example,

assuming an interface called MyIF, consider the following method:

void myMeth(MyIF ob) {

// ...

}

Any object that implements the MyIF interface can be passed to myMeth( ). It doesn’t matter

what other capabilities (if any) that object has. If it implements MyIF, then myMeth( ) can

operate on it.

Portability and Security Through Bytecode
Despite all of its powerful features, Java may not have been much more than a footnote in

programming history if it were not for one important but nearly transparent part of the

language: bytecode. As all Java programmers know, the output of the Java compiler is not

machine code that can be directly executed by a CPU. Instead, it is a highly optimized set

of portable instructions, called bytecode, which are executed by the Java Virtual Machine

(JVM). The original JVM was simply an interpreter for bytecode. Today, the JVM also

applies on-the-fly compilation of bytecode into executable code. Whatever process is used

to execute bytecode, its advantages are enormously important to the success of Java.

The first advantage is portability. By compiling a Java program into bytecode, it can be

executed on any computer, with any type of CPU (and operating system) as long as a JVM

is available for that environment. In other words, once a JVM has been implemented for a

specific environment, any Java program can run in that environment. It is not necessary to

create a separate executable for each different environment. The same bytecode can be run

in all environments. Therefore, through the use of bytecode, Java offered programmers the

ability “to write once, run anywhere.”

The second advantage achieved by bytecode is security. Because execution of the bytecode

is under the control of the JVM, the JVM can prevent a Java program from performing

malicious acts that affect the host machine. The ability to ensure the security of the host computer

was crucial to the success of Java because it enabled the creation of the applet. Because an

applet is a small, dynamically downloaded program that comes across the Internet, some

mechanism to prevent applets from doing harm was necessary. The combination of bytecode

and the JVM provided the mechanism by which applets could be downloaded safely. Frankly,

without bytecode, the Web would be a much different place today.

The Richness of the Java API
Conceptually, computer languages consist of two parts. The first is the language proper,

defined by the keywords and syntax. The second is the standard library, which contains a set

of classes, interfaces, and methods that are available to the programmer. Although all of the

major languages today provide large libraries, the one defined by Java stands out because of

the richness and diversity it offers to the programmer. When Java was first created, its library

6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 1

P:\010Comp\ApDev\971-3\ch01.vp
Monday, July 07, 2003 10:02:29 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



contained a set of core packages, such as java.lang, java.io, and java.net. With each new

release of Java, classes and packages have been added. Today, Java gives the programmer

access to a truly amazing array of functionality.

Since the beginning, one of the key elements that differentiated the Java library from that

provided by other languages was its support for networking. At the time of Java’s creation,

other languages, such as C++, did not (and still do not) provide standard library elements

that handle networking. By providing classes that easily handled connecting to and using

the Internet, Java helped spark the Internet revolution. With Java, the Internet was open to

all programmers, not just those that specialized in networking. The functionality in java.net

transformed computing.

Another key package of the core Java library is java.awt, which supports the Abstract

Window Toolkit (AWT). The AWT enables the programmer to create portable, GUI-based

code. That is, by using the AWT classes, it is possible to create a windowed application

that uses the various standard GUI elements, such as scroll bars, check boxes, and radio

buttons. Because of the AWT, it is possible to create a GUI application that can run in any

environment that supports the Java Virtual Machine. This level of GUI portability was unknown

prior to Java.

Java’s inclusion of the AWT revolutionized the way programmers thought about the

application environment. Before Java, GUI-based programs had to be specifically written

for their execution environments. This meant that a Windows program, for example, would

need to be substantially recoded to run in an Apple computer. After Java, a programmer

could write one program that would execute in both environments. By defining a portable

GUI, Java unified the programming environment.

In later years, a lightweight alternative to the AWT was added to Java: Swing. The Swing

components are contained in javax.swing and its subpackages. Swing offers the programmer

a rich set of GUI components that have enhanced portability. As many of the examples in this

book show, both the AWT and Swing give the programmer the ability to produce highly effective,

portable GUI-based applications.

Today, the Java library has grown substantially from its initial core. Each new release of

Java has been accompanied with additional library support. New packages have been added,

and new functionality has been added to existing packages. The Java library has been in a

constant state of transformation because it has been responsive to the rapidly evolving computing

environment. This ability to adapt and change in short order is part of the genius of Java.

The Applet
Although taken for granted today, the applet is one of Java’s more revolutionary features

because it allowed the creation of portable, dynamically downloaded programs that could safely

execute within the confines of a browser. In the Before Java world, executable content was

always suspect because of the harm a malicious program could do to the client’s computer.

Furthermore, code compiled for one type of CPU and operating system would not work on

another type of system. Because there are a wide variety of CPUs and operating systems

connected to the Internet, it was not practical to create a unique version of a program for all

environments. The Java applet provided a solution to both problems. With the applet, the Web

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 1

C h a p t e r 1 : T h e G e n i u s o f J a v a 7

AppDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 1

P:\010Comp\ApDev\971-3\ch01.vp
Monday, July 07, 2003 10:02:29 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



programmer was able to easily add dynamic content to the rather static world of HTML. Java

applets made the Web move, and there was no going back.

In addition to changing the way that we thought about Web content, the applet had another

important effect—or perhaps side effect. It helped propel the move to component software.

Because applets are small programs, they usually represent small units of functionality, which is

the same thing that a software component does. Once we began to think in terms of applets, it

was a small step to Beans, and beyond. Today, the component-oriented architecture, in which

an application consists of an interacting set of components, has largely replaced the monolithic

model that typified the past.

The Continuing Revolution
There is one more aspect of Java that reflects its genius, although it isn’t actually part of the

language. Java brought with it a culture of innovation that welcomed new ideas, and a process

by which these new ideas could be rapidly assimilated. Whereas many other computer languages

change slowly, Java is constantly evolving and adapting. Furthermore, this process is open

to the entire Java community through the Java Community Process (JCP). The JCP offers a

mechanism by which users of Java help influence the future direction of the language, tools,

and associated technologies. Thus, the people that actually use the language have input into

its ongoing development.

From the start, Java revolutionized programming—and the revolution hasn’t stopped. Java

is still at the forefront of computer language development. It is a language that has earned a

lasting place in the history of computing.

8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 1

P:\010Comp\ApDev\971-3\ch01.vp
Monday, July 07, 2003 10:02:29 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



CHAPTER

2
A Recursive-Descent

Expression Parser
by Herb Schildt

9

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 5:17:18 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



1 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

How do you write a program that will take as input a string containing a numeric

expression, such as (10 – 5) * 3, and compute the proper answer? If there is still

a “high priesthood” among programmers, it must be those few who know how

to do this. Many otherwise accomplished programmers are mystified by the way a high-level

language converts algebraic expressions into instructions that a computer can execute. This

procedure is called expression parsing, and it is the backbone of all language compilers and

interpreters, spreadsheets, and anything else that needs to convert numeric expressions into

a form that the computer can use.

Although mysterious to the uninitiated, expression parsing is a well-defined task for which

there is a rather elegant solution. This is because the problem is well defined and expression

parsing works according to the strict rules of algebra. This chapter develops what is commonly

referred to as a recursive-descent parser and all the necessary support routines that enable

you to evaluate numeric expressions. Once you have mastered the operation of the parser, you

can easily enhance and modify it to suit your needs.

Aside from being a useful piece of code in itself, the parser was chosen as the first example

in this book because it illustrates the power and range of the Java language. A parser is a “pure

code” subsystem. By this, I mean that it is not network-oriented, does not rely on a GUI interface,

is neither an applet nor servlet, and so on. It is the type of code that one might expect to find

written in C or C++, but not Java. Because Java was a revolutionary force that fundamentally

changed the way we program for the Internet, we sometimes forget that it is not limited to

that environment. Instead, Java is a full-featured language that can be applied to nearly any

programming task. The parser developed in this chapter proves this point.

Expressions
Because the parser processes an expression, it is necessary to understand what constitutes an

expression. Although there are many different types of expressions, this chapter deals with

only one type: numeric expressions. For our purposes numeric expressions are composed of

the following items:

� Numbers

� The operators +, –, /, *, ^, %, =

� Parentheses

� Variables

Here, the operator ^ indicates exponentiation (not the XOR as it does in Java) and = is the

assignment operator. These items can be combined in expressions according to the rules of

algebra. Here are some examples:

10 – 8

(100 – 5) * 14/6

a + b – c

10^5

a = 10 – b

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:47 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 1 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

Assume this precedence for each operator:

Highest + – (unary)

^

* / %

+ –

Lowest =

Operators of equal precedence evaluate from left to right.

The parser developed here will be subject to a few constraints. First, all variables are single

letters (in other words, 26 variables, A through Z, are available). The variables are not case

sensitive (a and A are treated as the same variable). Second, all numeric values are assumed

to be double, although you could easily modify the parser to handle other types of values.

Finally, to keep the logic clear and easy to understand, only rudimentary error checking is

included.

Parsing Expressions: The Problem
If you have not thought much about the problem of expression parsing, you might assume

that it is a simple task, but it isn't. To better understand the problem, try to evaluate this

sample expression:

10 – 2 * 3

You know that this expression is equal to the value 4. Although you could easily create a

program that would compute that specific expression, the problem is how to create a program

that gives the correct answer for any arbitrary expression. At first you might think of an

algorithm something like this:

a = get first operand

while(operands present) {

op = get operator

b = get second operand

a = a op b

}

This approach gets the first operand, the operator, and the second operand to perform the first

operation, and then gets the next operator and operand to perform the next operation, and so

on. However, if you try this basic approach, the expression 10 – 2 * 3 evaluates to 24 (that is,

8 * 3) instead of 4 because this procedure neglects the precedence of the operators. You cannot

just take the operands and operators in order from left to right because the rules of algebra

dictate that multiplication must be done before subtraction. Some beginners think that this

problem can be easily overcome, and sometimes, in very restricted cases, it can. But the problem

only gets worse when you add parentheses, exponentiation, variables, unary operators, and

the like.

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:47 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Although there are a number of ways to write the code that processes an expression, the

one developed here is the approach most easily written by a person. It is called a recursive-descent

parser, and in the course of this chapter you will see how it got its name. (Some of the other

methods used to write parsers employ complex tables that are usually generated by another

computer program. These are sometimes called table-driven parsers.)

Parsing an Expression
There are a number of ways to parse and evaluate an expression. For use with a recursive-

descent parser, think of expressions as recursive data structures—that is, expressions that are

defined in terms of themselves. If, for the moment, we assume that expressions can only use

+, –, *, /, and parentheses, all expressions can be defined with the following rules:

expression� term [+ term] [– term]

term� factor [* factor] [/ factor]

factor� variable, number, or (expression)

The square brackets designate an optional element, and the� means produces. In fact, the

rules are usually called the production rules of the expression. Therefore, for the definition of

term you could say: “Term produces factor times factor or factor divided by factor.” Notice

that the precedence of the operators is implicit in the way an expression is defined.

Here is an example. The expression

10 + 5 * B

has two terms: 10 and 5 * B. The second term contains two factors: 5 and B. These factors

consist of one number and one variable.

On the other hand, the expression

14 * (7 – C)

has two factors: 14 and (7 – C). The factors consist of one number and one parenthesized

expression. The parenthesized expression contains two terms: one number and one variable.

This process forms the basis for a recursive-descent parser, which is a set of mutually

recursive methods that work in a chainlike fashion and implement the production rules. At

each appropriate step, the parser performs the specified operations in the algebraically correct

sequence. To see how the production rules are used to parse an expression, let’s work through

an example using the following expression:

9/3 – (100 + 56)

Here is the sequence that you will follow:

1. Get the first term, 9/3.

2. Get each factor and divide the integers. The resulting value is 3.

1 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:48 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3. Get the second term, (100 + 56). At this point, start recursively analyzing this

subexpression.

4. Get each term and add. The resulting value is 156.

5. Return from the recursive evaluation of the second term.

6. Subtract 156 from 3. The answer is –153.

If you are a little confused at this point, don't feel bad. This is a fairly complex concept

that takes some getting used to. There are two basic things to remember about this recursive

view of expressions. First, the precedence of the operators is implicit in the way the production

rules are defined. Second, this method of parsing and evaluating expressions is very similar

to the way humans evaluate mathematical expressions.

The remainder of this chapter develops two parsers. The first will parse and evaluate

floating point expressions of type double that consist only of literal values. This parser

illustrates the basics of the recursive-descent method of parsing. The second adds the ability

to use variables.

Dissecting an Expression
In order to evaluate an expression, a parser needs to be fed the individual components of that

expression. For example, the expression

A * B – (W + 10)

contains these individual parts: A, *, B, –, (, W, +, 10, and ). In the language of parsing, each

component of an expression is called a token, and each token represents an indivisible unit

of the expression. Since tokenizing an expression is fundamental to parsing, let's look at it

before examining the parser itself.

To render an expression into tokens, you need a method that sequentially returns each

token in the expression individually, moving from start to finish. The method must also be

able to determine the type of a token and detect the end of the expression. In the parser

developed here, the method that performs this task is called getToken( ).

Both parsers in this chapter are encapsulated within the Parser class. Although this class

is described in detail later, the first part of it needs to be shown now so that the workings

of getToken( ) can be explained. Parser begins by defining the final variables and fields

shown here:

class Parser {

// These are the token types.

final int NONE = 0;

final int DELIMITER = 1;

final int VARIABLE = 2;

final int NUMBER = 3;

// These are the types of syntax errors.

C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 1 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:48 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



1 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

final int SYNTAX = 0;

final int UNBALPARENS = 1;

final int NOEXP = 2;

final int DIVBYZERO = 3;

// This token indicates end-of-expression.

final String EOE = "\0";

private String exp;   // refers to expression string

private int expIdx;   // current index into the expression

private String token; // holds current token

private int tokType;  // holds token's type

Parser first defines the values that indicate the type of a token. When parsing an expression,

each token must have a type associated with it. For the parsers developed in this chapter, only

three types are needed: variable, number, and delimiter. These are represented by the values

VARIABLE, NUMBER, and DELIMITER. The DELIMITER category is used for both

operators and parentheses. The NONE type is just a placeholder value for an undefined token.

Next, Parser defines the values that represent the various errors that can occur when

parsing and evaluating an expression. SYNTAX represents a broad category of errors that

result in a malformed expression. UNBALPARENS indicates unbalanced parentheses.

NOEXP is the error reported when no expression is present when the parser is executed.

DIVBYZERO indicates a divide-by-zero error.

The final variable EOE is the token that indicates that the end of the expression has been

reached.

A reference to the string that holds the expression being parsed is stored in exp. Thus, exp

will refer to a string such as "10+4". The index of the next token within that string is held in

expIdx, which is initially zero. The token that is obtained is stored in token, and its type is

stored in tokType. These fields are private because they are used only by the parser and should

not be modified by outside code.

The getToken( ) method is shown here. Each time it is called, it obtains the next token

from the expression in the string referred to by exp beginning at expIdx. In other words, each

time getToken( ) is called, it obtains the next token at exp[expIdx]. It puts this token into the

token field. It puts the type of the token into tokType. getToken( ) uses the isDelim( ) method,

which is also shown here:

// Obtain the next token.

private void getToken()

{

tokType = NONE;

token = "";

// Check for end of expression.

if(expIdx == exp.length()) {

token = EOE;

return;

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:48 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 1 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

}

// Skip over white space.

while(expIdx < exp.length() &&

Character.isWhitespace(exp.charAt(expIdx))) ++expIdx;

// Trailing whitespace ends expression.

if(expIdx == exp.length()) {

token = EOE;

return;

}

if(isDelim(exp.charAt(expIdx))) { // is operator

token += exp.charAt(expIdx);

expIdx++;

tokType = DELIMITER;

}

else if(Character.isLetter(exp.charAt(expIdx))) { // is variable

while(!isDelim(exp.charAt(expIdx))) {

token += exp.charAt(expIdx);

expIdx++;

if(expIdx >= exp.length()) break;

}

tokType = VARIABLE;

}

else if(Character.isDigit(exp.charAt(expIdx))) { // is number

while(!isDelim(exp.charAt(expIdx))) {

token += exp.charAt(expIdx);

expIdx++;

if(expIdx >= exp.length()) break;

}

tokType = NUMBER;

}

else { // unknown character terminates expression

token = EOE;

return;

}

}

// Return true if c is a delimiter.

private boolean isDelim(char c)

{

if((" +-/*%^=()".indexOf(c) != -1))

return true;

return false;

}

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:48 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Look closely at getToken( ). After the first few initializations, getToken( ) checks if the

end of the expression has been reached by seeing if expIdx is equal to exp.length( ). Since

expIdx is an index into the expression being analyzed, if it equals the length of the expression

string, the expression has been fully parsed.

If there are still more tokens to retrieve from the expression, getToken( ) first skips over

any leading spaces. If trailing spaces end the expression, then the end-of-expression token

EOE is returned. Otherwise, once the spaces have been skipped, exp[expIdx] contains either

a digit, a variable, or an operator. If the next character is an operator, it is returned as a string

in token, and DELIMITER is stored in tokType. If the next character is a letter instead, it is

assumed to be one of the variables. It is returned as a string in token, and tokType is assigned

the value VARIABLE. If the next character is a digit, the entire number is read and stored in

its string form in token and its type is NUMBER. Finally, if the next character is none of the

preceding, token is assigned EOE.

To keep the code in getToken( ) clear, a certain amount of error checking has been omitted

and some assumptions have been made. For example, any unrecognized character can end an

expression as long as it is preceded by a space. Also, in this version, variables can be of any

length, but only the first letter is significant. You can add more error checking and other

details as your specific application dictates.

To better understand the tokenization process, study what it returns for each token and

type in the following expression:

A + 100 – (B * C) /2

Token Token Type
A VARIABLE

+ DELIMITER

100 NUMBER

– DELIMITER

( DELIMITER

B VARIABLE

* DELIMITER

C VARIABLE

) DELIMITER

/ DELIMITER

2 NUMBER

Remember that token always holds a string, even if it contains just a single character.

One last point: Although Java contains some very useful, built-in tokenizing capabilities,

such as those supported by the StringTokenizer class, for the parser, it is better to handle

this job ourselves, using a dedicated tokenizer, such as getToken( ).

1 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:48 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 1 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

A Simple Expression Parser
Here is the first version of the parser. It can evaluate expressions that consist solely of literals,

operators, and parentheses. Although getToken( ) can process variables, the parser does

nothing with them. Once you understand how this simplified parser works, we will add the

ability to handle variables.

/*

This module contains the recursive descent

parser that does not use variables.

*/

// Exception class for parser errors.

class ParserException extends Exception {

String errStr; // describes the error

public ParserException(String str) {

errStr = str;

}

public String toString() {

return errStr;

}

}

class Parser {

// These are the token types.

final int NONE = 0;

final int DELIMITER = 1;

final int VARIABLE = 2;

final int NUMBER = 3;

// These are the types of syntax errors.

final int SYNTAX = 0;

final int UNBALPARENS = 1;

final int NOEXP = 2;

final int DIVBYZERO = 3;

// This token indicates end-of-expression.

final String EOE = "\0";

private String exp;   // refers to expression string

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:48 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



private int expIdx;   // current index into the expression

private String token; // holds current token

private int tokType;  // holds token's type

// Parser entry point.

public double evaluate(String expstr) throws ParserException

{

double result;

exp = expstr;

expIdx = 0;

getToken();

if(token.equals(EOE))

handleErr(NOEXP); // no expression present

// Parse and evaluate the expression.

result = evalExp2();

if(!token.equals(EOE)) // last token must be EOE

handleErr(SYNTAX);

return result;

}

// Add or subtract two terms.

private double evalExp2() throws ParserException

{

char op;

double result;

double partialResult;

result = evalExp3();

while((op = token.charAt(0)) == '+' || op == '-') {

getToken();

partialResult = evalExp3();

switch(op) {

case '-':

result = result - partialResult;

break;

case '+':

result = result + partialResult;

break;

}

}

1 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:48 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



return result;

}

// Multiply or divide two factors.

private double evalExp3() throws ParserException

{

char op;

double result;

double partialResult;

result = evalExp4();

while((op = token.charAt(0)) == '*' ||

op == '/' || op == '%') {

getToken();

partialResult = evalExp4();

switch(op) {

case '*':

result = result * partialResult;

break;

case '/':

if(partialResult == 0.0)

handleErr(DIVBYZERO);

result = result / partialResult;

break;

case '%':

if(partialResult == 0.0)

handleErr(DIVBYZERO);

result = result % partialResult;

break;

}

}

return result;

}

// Process an exponent.

private double evalExp4() throws ParserException

{

double result;

double partialResult;

double ex;

int t;

result = evalExp5();

C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 1 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:48 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



if(token.equals("^")) {

getToken();

partialResult = evalExp4();

ex = result;

if(partialResult == 0.0) {

result = 1.0;

} else

for(t=(int)partialResult-1; t > 0; t--)

result = result * ex;

}

return result;

}

// Evaluate a unary + or -.

private double evalExp5() throws ParserException

{

double result;

String  op;

op = "";

if((tokType == DELIMITER) &&

token.equals("+") || token.equals("-")) {

op = token;

getToken();

}

result = evalExp6();

if(op.equals("-")) result = -result;

return result;

}

// Process a parenthesized expression.

private double evalExp6() throws ParserException

{

double result;

if(token.equals("(")) {

getToken();

result = evalExp2();

if(!token.equals(")"))

handleErr(UNBALPARENS);

getToken();

}

2 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:48 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



else result = atom();

return result;

}

// Get the value of a number.

private double atom() throws ParserException

{

double result = 0.0;

switch(tokType) {

case NUMBER:

try {

result = Double.parseDouble(token);

} catch (NumberFormatException exc) {

handleErr(SYNTAX);

}

getToken();

break;

default:

handleErr(SYNTAX);

break;

}

return result;

}

// Handle an error.

private void handleErr(int error) throws ParserException

{

String[] err = {

"Syntax Error",

"Unbalanced Parentheses",

"No Expression Present",

"Division by Zero"

};

throw new ParserException(err[error]);

}

// Obtain the next token.

private void getToken()

{

tokType = NONE;

token = "";

C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 2 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:48 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

// Check for end of expression.

if(expIdx == exp.length()) {

token = EOE;

return;

}

// Skip over white space.

while(expIdx < exp.length() &&

Character.isWhitespace(exp.charAt(expIdx))) ++expIdx;

// Trailing whitespace ends expression.

if(expIdx == exp.length()) {

token = EOE;

return;

}

if(isDelim(exp.charAt(expIdx))) { // is operator

token += exp.charAt(expIdx);

expIdx++;

tokType = DELIMITER;

}

else if(Character.isLetter(exp.charAt(expIdx))) { // is variable

while(!isDelim(exp.charAt(expIdx))) {

token += exp.charAt(expIdx);

expIdx++;

if(expIdx >= exp.length()) break;

}

tokType = VARIABLE;

}

else if(Character.isDigit(exp.charAt(expIdx))) { // is number

while(!isDelim(exp.charAt(expIdx))) {

token += exp.charAt(expIdx);

expIdx++;

if(expIdx >= exp.length()) break;

}

tokType = NUMBER;

}

else { // unknown character terminates expression

token = EOE;

return;

}

}

// Return true if c is a delimiter.

private boolean isDelim(char c)

{

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:48 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 2 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

if((" +-/*%^=()".indexOf(c) != -1))

return true;

return false;

}

}

Notice the ParserException class declared near the top of the code. This is the type of

exception that will be thrown by the parser if it encounters an error while processing the

expression. This exception will need to be handled by code that uses the parser.

The parser as it is shown can handle the following operators: +, –, *, /, %. In addition,

it can handle integer exponentiation (^) and the unary minus. The parser can also deal with

parentheses correctly.

To use the parser, first create an object of type Parser. Then call evaluate( ), passing the

expression string that you want evaluated as an argument. The result is returned. Because

Parser throws a ParserException on error, your application must handle such an exception.

The following example demonstrates the parser:

// Demonstrate the parser.

import java.io.*;

class PDemo {

public static void main(String args[])

throws IOException

{

String expr;

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

Parser p = new Parser();

System.out.println("Enter an empty expression to stop.");

for(;;) {

System.out.print("Enter expression: ");

expr = br.readLine();

if(expr.equals("")) break;

try {

System.out.println("Result: " + p.evaluate(expr));

System.out.println();

} catch (ParserException exc) {

System.out.println(exc);

}

}

}

}

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:48 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Here is a sample run:

Enter an empty expression to stop.

Enter expression: 10-2*3

Result: 4.0

Enter expression: (10-2)*3

Result: 24.0

Enter expression: 10/3.5

Result: 2.857142857142857

Understanding the Parser
Let’s now take a detailed look at Parser. The string containing the expression to be evaluated

is referred to by exp. This field is set each time evaluate( ) is called. It is important to remember

that the parser evaluates expressions that are contained in standard Java strings. For example,

the following strings contain expressions that the parser can evaluate:

"10 – 5"

"2 * 3.3 / (3.1416 * 3.3)"

The current index into exp is stored in expIdx. When parsing begins execution, expIdx

is set to zero. expIdx is incremented as the parser moves through the expression. The token

field holds the current token, and tokType contains the token type.

The entry point to the parser is through evaluate( ), which must be called with a string

containing the expression to be analyzed. The methods evalExp2( ) through evalExp6( )

along with atom( ) form the recursive-descent parser. They implement an enhanced set of

the expression production rules discussed earlier. The comments at the top of each method

describe the function they perform. In the next version of the parser, a method called

evalExp1( ) will also be added.

The handleErr( ) method handles syntax errors in the expression. The methods getToken( )

and isDelim( ) dissect the expression into its component parts, as described earlier. The parser

uses getToken( ) to obtain tokens from the expression, beginning at the beginning of the

expression and working to the end. Based on the type of token obtained, different actions

are taken.

To understand exactly how the parser evaluates an expression, work through the following

expression:

10 – 3 * 2

When evaluate( ), the entry point into the parser, is called, it gets the first token. If the

token is EOE, then evaluate( ) has been called with a null string, and the NOEXP error is

generated. However, in this example, the token contains the number 10. Next, evalExp2( )

is called. evalExp2( ) then calls evalExp3( ), and evalExp3( ) calls evalExp4( ), which in

turn calls evalExp5( ). Then evalExp5( ) checks whether the token is a unary plus or minus,

which in this case, it is not, so evalExp6( ) is called. At this point evalExp6( ) either recursively

2 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



calls evalExp2( ) (in the case of a parenthesized expression) or atom( ) to find the value of

a number. Since the token is not a left parentheses, atom( ) is executed and the value 10 is

returned. Next, another token is retrieved, and the methods begin to return up the chain. At

this point, the token is –, and the methods return up to evalExp2( ).

What happens next is very important. Because the token is –, it is saved in op. The parser

then gets the next token, which is 3, and the descent down the chain begins again. As before,

atom( ) is entered. The value 3 is returned in result and the token * is read. This causes a

return back up the chain to evalExp3( ), where the final token 2 is read. At this point, the

first arithmetic operation occurs—the multiplication of 2 and 3. The result is returned to

evalExp2( ) and the subtraction is performed. The subtraction yields the answer 4. Although

the process may at first seem complicated, work through some other examples to verify that it

functions correctly every time.

If an error occurs while parsing, the handleErr( ) method is called. This method throws

a ParserException that describes the error. This exception is thrown out of evalutate( ) and

must be handled by code that uses the parser.

This parser would be suitable for use by a simple desktop calculator, as is illustrated by

the previous program. Before it could be used in a computer language, a database, or in a

sophisticated calculator, it needs the ability to handle variables. This is the subject of the

next section.

Adding Variables to the Parser
All programming languages, many calculators, and spreadsheets use variables to store values

for later use. Before the parser can be used for such applications, it needs to be expanded to

include variables. To accomplish this, you need to add several things to the parser. First, of

course, are the variables themselves. As stated earlier, we will use the letters A through Z

for variables. The variables are stored in an array inside the Parser class. Each variable uses

one array location in a 26-element array of doubles. Therefore, add the following field to the

Parser class:

// Array for variables.

private double vars[] = new double[26];

Each element in the array is automatically initialized to zero when a Parser object is

instantiated.

You will also need a method to look up the value of a given variable. Because the

variables are named A through Z, they can easily be used to index the array vars by

subtracting the ASCII value for A from the variable name. The method findVar( ), shown

here, accomplishes this:

// Return the value of a variable.

private double findVar(String vname) throws ParserException

{

if(!Character.isLetter(vname.charAt(0))){

handleErr(SYNTAX);

C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 2 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



return 0.0;

}

return vars[Character.toUpperCase(vname.charAt(0))-'A'];

}

As this method is written, it will actually accept long variable names, such as A12 or test,

but only the first letter is significant. You can change this feature to fit your needs.

You must also modify the atom( ) method to handle both numbers and variables. The new

version is shown here:

// Get the value of a number or variable.

private double atom() throws ParserException

{

double result = 0.0;

switch(tokType) {

case NUMBER:

try {

result = Double.parseDouble(token);

} catch (NumberFormatException exc) {

handleErr(SYNTAX);

}

getToken();

break;

case VARIABLE:

result = findVar(token);

getToken();

break;

default:

handleErr(SYNTAX);

break;

}

return result;

}

Technically, these additions are all that is needed for the parser to use variables correctly;

however, there is no way for these variables to be assigned a value. To enable a variable to be

given a value, the parser needs to be able to handle the assignment operator, which is =. To

implement assignment, we will add another method, called evalExp1( ), to the Parser class.

This method will now begin the recursive-descent chain. This means that it, not evalExp2( ),

must be called by evaluate( ) to begin parsing the expression. The evalExp1( ) method is

shown here:

// Process an assignment.

private double evalExp1() throws ParserException

{

2 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



double result;

int varIdx;

int ttokType;

String temptoken;

if(tokType == VARIABLE) {

// save old token

temptoken = new String(token);

ttokType = tokType;

// Compute the index of the variable.

varIdx = Character.toUpperCase(token.charAt(0)) - 'A';

getToken();

if(!token.equals("=")) {

putBack(); // return current token

// restore old token -- not an assignment

token = new String(temptoken);

tokType = ttokType;

}

else {

getToken(); // get next part of exp

result = evalExp2();

vars[varIdx] = result;

return result;

}

}

return evalExp2();

}

The evalExp1( ) method needs to look ahead to determine whether an assignment is actually

being made. This is because a variable name always precedes an assignment, but a variable

name alone does not guarantee that an assignment expression follows. That is, the parser

knows that A = 100 is an assignment, but it is also smart enough to know that A/10 is not. To

accomplish this, evalExp1( ) reads the next token from the input stream. If it is not an equal

sign, the token is returned to the input stream for later use by calling putBack( ), shown here:

// Return a token to the input stream.

private void putBack()

{

if(token == EOE) return;

for(int i=0; i < token.length(); i++) expIdx--;

}

C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 2 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



After making all the necessary changes, the parser will now look like this:

/*

This module contains the recursive descent

parser that uses variables.

*/

// Exception class for parser errors.

class ParserException extends Exception {

String errStr; // describes the error

public ParserException(String str) {

errStr = str;

}

public String toString() {

return errStr;

}

}

class Parser {

// These are the token types.

final int NONE = 0;

final int DELIMITER = 1;

final int VARIABLE = 2;

final int NUMBER = 3;

// These are the types of syntax errors.

final int SYNTAX = 0;

final int UNBALPARENS = 1;

final int NOEXP = 2;

final int DIVBYZERO = 3;

// This token indicates end-of-expression.

final String EOE = "\0";

private String exp;   // refers to expression string

private int expIdx;   // current index into the expression

private String token; // holds current token

private int tokType;  // holds token's type

// Array for variables.

private double vars[] = new double[26];

// Parser entry point.

2 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



public double evaluate(String expstr) throws ParserException

{

double result;

exp = expstr;

expIdx = 0;

getToken();

if(token.equals(EOE))

handleErr(NOEXP); // no expression present

// Parse and evaluate the expression.

result = evalExp1();

if(!token.equals(EOE)) // last token must be EOE

handleErr(SYNTAX);

return result;

}

// Process an assignment.

private double evalExp1() throws ParserException

{

double result;

int varIdx;

int ttokType;

String temptoken;

if(tokType == VARIABLE) {

// save old token

temptoken = new String(token);

ttokType = tokType;

// Compute the index of the variable.

varIdx = Character.toUpperCase(token.charAt(0)) - 'A';

getToken();

if(!token.equals("=")) {

putBack(); // return current token

// restore old token -- not an assignment

token = new String(temptoken);

tokType = ttokType;

}

else {

getToken(); // get next part of exp

result = evalExp2();

C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 2 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



vars[varIdx] = result;

return result;

}

}

return evalExp2();

}

// Add or subtract two terms.

private double evalExp2() throws ParserException

{

char op;

double result;

double partialResult;

result = evalExp3();

while((op = token.charAt(0)) == '+' || op == '-') {

getToken();

partialResult = evalExp3();

switch(op) {

case '-':

result = result - partialResult;

break;

case '+':

result = result + partialResult;

break;

}

}

return result;

}

// Multiply or divide two factors.

private double evalExp3() throws ParserException

{

char op;

double result;

double partialResult;

result = evalExp4();

while((op = token.charAt(0)) == '*' ||

op == '/' || op == '%') {

getToken();

partialResult = evalExp4();

3 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



switch(op) {

case '*':

result = result * partialResult;

break;

case '/':

if(partialResult == 0.0)

handleErr(DIVBYZERO);

result = result / partialResult;

break;

case '%':

if(partialResult == 0.0)

handleErr(DIVBYZERO);

result = result % partialResult;

break;

}

}

return result;

}

// Process an exponent.

private double evalExp4() throws ParserException

{

double result;

double partialResult;

double ex;

int t;

result = evalExp5();

if(token.equals("^")) {

getToken();

partialResult = evalExp4();

ex = result;

if(partialResult == 0.0) {

result = 1.0;

} else

for(t=(int)partialResult-1; t > 0; t--)

result = result * ex;

}

return result;

}

// Evaluate a unary + or -.

private double evalExp5() throws ParserException

{

C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 3 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



double result;

String  op;

op = "";

if((tokType == DELIMITER) &&

token.equals("+") || token.equals("-")) {

op = token;

getToken();

}

result = evalExp6();

if(op.equals("-")) result = -result;

return result;

}

// Process a parenthesized expression.

private double evalExp6() throws ParserException

{

double result;

if(token.equals("(")) {

getToken();

result = evalExp2();

if(!token.equals(")"))

handleErr(UNBALPARENS);

getToken();

}

else result = atom();

return result;

}

// Get the value of a number or variable.

private double atom() throws ParserException

{

double result = 0.0;

switch(tokType) {

case NUMBER:

try {

result = Double.parseDouble(token);

} catch (NumberFormatException exc) {

handleErr(SYNTAX);

}

3 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



getToken();

break;

case VARIABLE:

result = findVar(token);

getToken();

break;

default:

handleErr(SYNTAX);

break;

}

return result;

}

// Return the value of a variable.

private double findVar(String vname) throws ParserException

{

if(!Character.isLetter(vname.charAt(0))){

handleErr(SYNTAX);

return 0.0;

}

return vars[Character.toUpperCase(vname.charAt(0))-'A'];

}

// Return a token to the input stream.

private void putBack()

{

if(token == EOE) return;

for(int i=0; i < token.length(); i++) expIdx--;

}

// Handle an error.

private void handleErr(int error) throws ParserException

{

String[] err = {

"Syntax Error",

"Unbalanced Parentheses",

"No Expression Present",

"Division by Zero"

};

throw new ParserException(err[error]);

}

// Obtain the next token.

private void getToken()

C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 3 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

{

tokType = NONE;

token = "";

// Check for end of expression.

if(expIdx == exp.length()) {

token = EOE;

return;

}

// Skip over white space.

while(expIdx < exp.length() &&

Character.isWhitespace(exp.charAt(expIdx))) ++expIdx;

// Trailing whitespace ends expression.

if(expIdx == exp.length()) {

token = EOE;

return;

}

if(isDelim(exp.charAt(expIdx))) { // is operator

token += exp.charAt(expIdx);

expIdx++;

tokType = DELIMITER;

}

else if(Character.isLetter(exp.charAt(expIdx))) { // is variable

while(!isDelim(exp.charAt(expIdx))) {

token += exp.charAt(expIdx);

expIdx++;

if(expIdx >= exp.length()) break;

}

tokType = VARIABLE;

}

else if(Character.isDigit(exp.charAt(expIdx))) { // is number

while(!isDelim(exp.charAt(expIdx))) {

token += exp.charAt(expIdx);

expIdx++;

if(expIdx >= exp.length()) break;

}

tokType = NUMBER;

}

else { // unknown character terminates expression

token = EOE;

return;

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

}

// Return true if c is a delimiter.

private boolean isDelim(char c)

{

if((" +-/*%^=()".indexOf(c) != -1))

return true;

return false;

}

}

To try the enhanced parser, you can use the same program that you used for the simple

parser. With the enhanced parser, you can now enter expressions like

A = 10/4

A – B

C = A * (F – 21)

Syntax Checking in a Recursive-Descent Parser
In expression parsing, a syntax error is simply a situation in which the input expression does

not conform to the strict rules required by the parser. Most of the time, this is caused by

human error, usually typing mistakes. For example, the following expressions are not valid

for the parsers in this chapter:

10 ** 8

((10 – 5) * 9

/8

The first contains two operators in a row, the second has unbalanced parentheses, and the

last has a division sign at the start of an expression. None of these conditions is allowed by

the parser. Because syntax errors can cause the parser to give erroneous results, you need to

guard against them.

In the parser, the handleErr( ) method is called when an error is detected. Unlike some

other types of parsers, the recursive-descent method makes syntax checking easy because, for

the most part, it occurs in atom( ), findVar( ), or evalExp6( ), where parentheses are checked.

When handleErr( ) is called, it throws a ParserException that contains a description of

the error. This exception is not caught by Parser, but thrown to the calling code. Thus, the

parser immediately stops when an error is encountered. You can, of course, change this behavior

to suit your own needs.

One thing you might want to do is expand the information contained in a ParserException

object. As it is currently written, this class stores only a string describing the error. You might

want to add the error code itself, the index in the expression string at which point the error

occurred, or other information.

C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 3 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

A Calculator Applet
The parser is extremely simple to use and can be added to nearly any application. To understand

just how easy it is to utilize the parser consider the following example. In only a few lines of

code it creates a fully functional calculator applet. The calculator uses two text fields. The

first contains the expression to be evaluated. The second displays the result. The result text

field is read-only. Error messages are displayed on the status line. Sample output (using the

Applet Viewer) is shown in Figure 2-1.

// A simple calculator applet.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="Calc" width=200 height=150>

</applet>

*/

public class Calc extends Applet

implements ActionListener {

TextField expText, resText;

Parser p;

public void init() {

Label heading = new

Label("Expression Calculator ", Label.CENTER);

Label explab = new Label("Expression ", Label.CENTER);

Label reslab = new Label("Result     ", Label.CENTER);

expText = new TextField(24);

resText = new TextField(24);

resText.setEditable(false); // result field for display only

add(heading);

add(explab);

add(expText);

add(reslab);

add(resText);

/* Register expression text field

to receive action events. */

expText.addActionListener(this);

// create parser

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



p = new Parser();

}

// User pressed Enter.

public void actionPerformed(ActionEvent ae) {

repaint();

}

public void paint(Graphics g) {

double result = 0.0;

String expstr = expText.getText();

try {

if(expstr.length() != 0)

result = p.evaluate(expstr);

// To clear expression after ENTER is pressed

// use the folloing line:

//    expText.setText("");

resText.setText(Double.toString(result));

showStatus(""); // erase any previous error message

} catch (ParserException exc) {

showStatus(exc.toString());

resText.setText("");

}

}

}

Calc begins by declaring three instance variables. The first two are expText and resText,

which hold references to the expression and result text field components. A reference to the

parser is held in p.

C h a p t e r 2 : A R e c u r s i v e - D e s c e n t E x p r e s s i o n P a r s e r 3 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

Figure 2-1 A simple yet effective calculator applet

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:50 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 2

Inside init( ), the text fields are created and added to the applet. An action listener is

registered for expText, which is the applet itself. An action event is generated by a text field

whenever the user presses ENTER. Because the result text field, resText, is for display purposes

only, it is marked as read-only by calling setEditable(false). This causes it to be grayed, and

it will not respond to user input. Finally, a Parser instance is instantiated and assigned to p.

To use the calculator, simply enter an expression and then press ENTER. This causes an

ActionEvent to be generated, which is handled by the actionPerformed( ) method. This

causes repaint( ) to be called, which eventually leads to paint( ) being called. Inside paint( ),

the parser is executed to compute the value of the expression and the result is displayed. Notice

that errors are displayed on the status line.

Some Things to Try
The expression parsers shown in this chapter are quite useful in a variety of applications because

they enable you to offer expanded functionality without significant effort on your part. Consider

the situation in which your program requests that the user enter a numeric value. For example,

an application might ask the user to enter the number of copies of a document to print. Normally,

you would simply display a text field, wait for input, and then convert that text into its internal

numeric format. This simple approach would allow the user to enter a value, such as 100.

However, what if the user wanted to print 72 copies for each of 9 departments? The user

would need to manually compute that product and then enter the value 648 into the text field.

However, if you use the parser to compute the value obtained from the text field, then the user

could enter 9*72, and no manual computation would be required. The ability to parse and

evaluate a numeric expression can add a sophisticated, professional feel to even the simplest

application. Try using the parser to handle numeric input for one of your applications.

As mentioned early on in this chapter, only minimal error checking is performed by the

parser. You might want to add detailed error reporting. For example, you could highlight

the point in the expression at which an error was detected. This would allow the user to

find and correct a syntax error.

As the parser now stands it can evaluate only numeric expressions. However, with a few

additions, it is possible to evaluate other types of expressions, such as strings, spatial coordinates,

or complex numbers. For example, to allow the parser to evaluate strings, you must make the

following changes:

1. Define a new token type called STRING.

2. Enhance getToken( ) so that it recognizes strings.

3. Add a new case inside atom( ) that handles STRING tokens.

After implementing these steps, the parser could handle string expressions like these:

a = "one"

b = "two"

c = a + b

The result in c should be the concatenation of a and b, or "onetwo".

P:\010Comp\ApDev\971-3\ch02.vp
Monday, July 07, 2003 10:02:50 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



CHAPTER

3
Implementing Language

Interpreters in Java
by Herb Schildt

39

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 5:17:47 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



Have you ever wanted to create your own computer language? If you're like most

programmers, you probably have. Frankly, the idea of being able to create, control,

enhance, and modify your own computer language is very appealing. However,

few programmers realize how easy, and enjoyable, it can be. Be assured that the development

of a full-featured compiler, such as Java, is a major undertaking, but the creation of a language

interpreter is a much simpler task.

Although both interpreters and compilers take as input the source code for a program,

what they do with that source code differs significantly. A compiler converts the source code

of a program into an executable form. Often, as is the case with a language like C++, this

executable form consists of actual CPU instructions that are directly executed by the computer.

In other cases, the output of a compiler is a portable intermediate form, which is then executed

by a runtime system. This is the way Java works. In Java, this intermediate code is called

bytecode.

An interpreter works in a completely different way. It reads the source code to a program,

executing each statement as it is encountered. Thus, an interpreter does not translate the source

code into object code. Instead, the interpreter directly executes the program. Although program

execution via an interpreter is slower than when the same program is executed in its compiled

form, interpreters are still commonly used in programming for the following reasons.

First, they can provide a truly interactive environment in which program execution can

be paused and resumed through user interaction. Such an interactive environment is helpful

in robotics, for example. Second, because of the nature of language interpreters, they are

especially well suited for interactive debugging. Third, interpreters are excellent for “script

languages,” such as query languages for databases. Fourth, they allow the same program to

run on a variety of different platforms. Only the interpreter's runtime package must be

implemented for each new environment.

Sometimes the term interpreter is used in situations other than those just described. For

example, the original Java runtime system was called a bytecode interpreter. This is not the

same type of interpreter developed in this chapter. The Java runtime system provides an execution

environment for bytecode, which is a highly optimized set of portable machine instructions.

Thus, the Java runtime system does not operate on source code, but on portable machine code.

This is why the Java runtime system is called the Java Virtual Machine.

In addition to being an interesting and useful piece of code, the interpreter developed in

this chapter serves a second purpose: it demonstrates the streamlined elegance of the Java

language. Like the parser in Chapter 2, the language interpreter is a “pure code” example. It

is also a fairly sophisticated program. The ease by which the interpreter can be implemented

in Java gives testimony to Java's versatility. Moreover, the transparency of the code shows the

expressive power of the Java syntax and libraries.

What Computer Language to Interpret?
Before we can build an interpreter, it is necessary to choose the language that we want to

interpret. Although Java might seem an obvious choice, it is too large and sophisticated

a language. The source code for an interpreter for even a small subset of the Java language

4 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:18 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 4 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

would be far too big to fit into a chapter of this book! Moreover, you won't normally need

to write an interpreter for a language as powerful as Java. Most likely, you will be writing

interpreters for relatively simple languages. Thus, a better choice for the interpreter is a compact

language that is readily adapted to interpretation. A language that fits these criteria is the

original version of BASIC, and the interpreter developed in this chapter will accept a subset

of this language. This subset is hereafter referred to as Small BASIC.

A BASIC-like language was chosen for three reasons. First, BASIC was originally designed

to be interpreted. As such, it is relatively easy to implement an interpreter for BASIC. For

example, the original version of BASIC did not support local variables, recursive methods,

blocks, classes, overloading, and so on—all of which increase the complexity of the language.

However, the same principles used to interpret a subset of BASIC will also apply to other

languages, and you can use the code developed here as a starting point. The second reason

for selecting BASIC is that a reasonable subset can be implemented in a relatively small

amount of code. Finally, the original BASIC syntax is easy to master, requiring nearly no

time to learn. Thus, even if you have no familiarity with traditional BASIC, you will have

no trouble using Small BASIC.

The following example of a Small BASIC program illustrates just how easy the language

is. Even if you have never seen a traditional-style BASIC program before, you will probably

find its operation clear.

PRINT "A Simple Small BASIC Program"

FOR X = 1 TO 10

GOSUB 100

NEXT

END

100 PRINT X

RETURN

The program produces the following output:

A Simple Small BASIC Program

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Although the meanings of the Small BASIC keywords are nearly intuitive, each is also fully

explained later in this chapter.

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:18 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



One last point: Small BASIC is patterned after the original version of BASIC from several

years ago, not Visual Basic. Visual Basic has very little in common with the original BASIC

language. Of course, once you understand how the interpreter works, you can change it to

interpret whatever language or variant you desire.

An Overview of the Interpreter
At the outset it is necessary to reemphasize that the interpreter developed in this chapter is

a source code interpreter. This means that it executes a program by reading its source code

one statement at a time, performing each specified operation as it goes. This differs from a

pseudo-code interpreter, such as the original Java runtime system that interprets bytecode.

The difference is that a source code interpreter operates directly on the source code of the

program. A pseudo-code interpreter executes a program after it has been converted by a

compiler into a machine-independent, intermediate code. Source code interpreters are easier

to create and don't require a separate compilation stage.

The Small BASIC interpreter contains two major subsystems: the expression parser, which

handles numeric expressions, and the interpreter, which actually executes the program. The

expression parser is adapted from the one shown in Chapter 2. As it is used here, it parses a

numeric expression that is contained within a larger program, rather than just parsing a self-

contained expression as it did in Chapter 2.

Both the interpreter and the parser subsystems are contained within a single interpreter

class, called SBasic. Although it would in theory have been possible to use two separate classes,

one for the interpreter and one for the expression parser, it was more efficient to combine

both into a single class. The reason for this is that the expression parser and the interpreter

code are highly intertwined. For example, both operate on the same character array that holds

the program. Separating them into two classes would have added considerable overhead, a loss

of performance, and duplication of functionality. Furthermore, because parsing an expression

is simply a part of the larger task of interpreting a program, it makes sense to have the entire

mechanism contained within a single class.

The interpreter works by reading the source code of a program one token at a time. When it

encounters a keyword, it does whatever that keyword requests. For example, when the interpreter

reads PRINT, it prints the value of the expression that follows. When it reads GOSUB, it executes

the specified subroutine. This process continues until the end of the program is reached. Thus, the

interpreter simply does what the program tells it to do!

The Small BASIC Interpreter
The code for the Small BASIC interpreter is fairly long—longer than one would normally

put in a chapter of a book. However, don't be intimidated by its size. Despite its length, the

interpreter is conceptually simple, and once you grasp its general mode of operation, each

part is easy to understand.

The entire code for the Small BASIC interpreter is shown next. The remainder of this

chapter will explain how it works, and how to use it.

4 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:18 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// A Small BASIC Interpreter.

import java.io.*;

import java.util.*;

// Exception class for interpreter errors.

class InterpreterException extends Exception {

String errStr; // describes the error

public InterpreterException(String str) {

errStr = str;

}

public String toString() {

return errStr;

}

}

// The Small BASIC interpreter.

class SBasic {

final int PROG_SIZE = 10000; // maximum program size

// These are the token types.

final int NONE = 0;

final int DELIMITER = 1;

final int VARIABLE = 2;

final int NUMBER = 3;

final int COMMAND = 4;

final int QUOTEDSTR = 5;

// These are the types of errors.

final int SYNTAX = 0;

final int UNBALPARENS = 1;

final int NOEXP = 2;

final int DIVBYZERO = 3;

final int EQUALEXPECTED = 4;

final int NOTVAR = 5;

final int LABELTABLEFULL = 6;

final int DUPLABEL = 7;

final int UNDEFLABEL = 8;

final int THENEXPECTED = 9;

final int TOEXPECTED = 10;

final int NEXTWITHOUTFOR = 11;

final int RETURNWITHOUTGOSUB = 12;

final int MISSINGQUOTE = 13;

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 4 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:18 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



final int FILENOTFOUND = 14;

final int FILEIOERROR = 15;

final int INPUTIOERROR = 16;

// Internal representation of the Small BASIC keywords.

final int UNKNCOM = 0;

final int PRINT = 1;

final int INPUT = 2;

final int IF = 3;

final int THEN = 4;

final int FOR = 5;

final int NEXT = 6;

final int TO = 7;

final int GOTO = 8;

final int GOSUB = 9;

final int RETURN = 10;

final int END = 11;

final int EOL = 12;

// This token indicates end-of-program.

final String EOP = "\0";

// Codes for double-operators, such as <=.

final char LE = 1;

final char GE = 2;

final char NE = 3;

// Array for variables.

private double vars[];

// This class links keywords with their keyword tokens.

class Keyword {

String keyword; // string form

int keywordTok; // internal representation

Keyword(String str, int t) {

keyword = str;

keywordTok = t;

}

}

/* Table of keywords with their internal representation.

All keywords must be entered lowercase. */

Keyword kwTable[] = {

new Keyword("print", PRINT), // in this table.

4 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:18 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 4 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

new Keyword("input", INPUT),

new Keyword("if", IF),

new Keyword("then", THEN),

new Keyword("goto", GOTO),

new Keyword("for", FOR),

new Keyword("next", NEXT),

new Keyword("to", TO),

new Keyword("gosub", GOSUB),

new Keyword("return", RETURN),

new Keyword("end", END)

};

private char[] prog; // refers to program array

private int progIdx; // current index into program

private String token; // holds current token

private int tokType;  // holds token's type

private int kwToken; // internal representation of a keyword

// Support for FOR loops.

class ForInfo {

int var; // counter variable

double target; // target value

int loc; // index in source code to loop to

}

// Stack for FOR loops.

private Stack fStack;

// Defines label table entries.

class Label {

String name; // label

int loc; // index of label's location in source file

public Label(String n, int i) {

name = n;

loc = i;

}

}

// A map for labels.

private TreeMap labelTable;

// Stack for gosubs.

private Stack gStack;

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:18 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Relational operators.

char rops[] = {

GE, NE, LE, '<', '>', '=', 0

};

/* Create a string containing the relational

operators in order to make checking for

them more convenient. */

String relops = new String(rops);

// Constructor for SBasic.

public SBasic(String progName)

throws InterpreterException {

char tempbuf[] = new char[PROG_SIZE];

int size;

// Load the program to execute.

size = loadProgram(tempbuf, progName);

if(size != -1) {

// Create a properly sized array to hold the program.

prog = new char[size];

// Copy the program into program array.

System.arraycopy(tempbuf, 0, prog, 0, size);

}

}

// Load a program.

private int loadProgram(char[] p, String fname)

throws InterpreterException

{

int size = 0;

try {

FileReader fr = new FileReader(fname);

BufferedReader br = new BufferedReader(fr);

size = br.read(p, 0, PROG_SIZE);

fr.close();

} catch(FileNotFoundException exc) {

handleErr(FILENOTFOUND);

4 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:18 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



} catch(IOException exc) {

handleErr(FILEIOERROR);

}

// If file ends with an EOF mark, back up.

if(p[size-1] == (char) 26) size--;

return size; // return size of program

}

// Execute the program.

public void run() throws InterpreterException {

// Initialize for new program run.

vars = new double[26];

fStack = new Stack();

labelTable = new TreeMap();

gStack = new Stack();

progIdx = 0;

scanLabels(); // find the labels in the program

sbInterp(); // execute

}

// Entry point for the Small BASIC interpreter.

private void sbInterp() throws InterpreterException

{

// This is the interpreter's main loop.

do {

getToken();

// Check for assignment statement.

if(tokType==VARIABLE) {

putBack(); // return the var to the input stream

assignment(); // handle assignment statement

}

else // is keyword

switch(kwToken) {

case PRINT:

print();

break;

case GOTO:

execGoto();

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 4 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:18 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



break;

case IF:

execIf();

break;

case FOR:

execFor();

break;

case NEXT:

next();

break;

case INPUT:

input();

break;

case GOSUB:

gosub();

break;

case RETURN:

greturn();

break;

case END:

return;

}

} while (!token.equals(EOP));

}

// Find all labels.

private void scanLabels() throws InterpreterException

{

int i;

Object result;

// See if the first token in the file is a label.

getToken();

if(tokType==NUMBER)

labelTable.put(token, new Integer(progIdx));

findEOL();

do {

getToken();

if(tokType==NUMBER) {// must be a line number

result = labelTable.put(token,

new Integer(progIdx));

if(result != null)

handleErr(DUPLABEL);

4 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:18 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

// If not on a blank line, find next line.

if(kwToken != EOL) findEOL();

} while(!token.equals(EOP));

progIdx = 0; // reset index to start of program

}

// Find the start of the next line.

private void findEOL()

{

while(progIdx < prog.length &&

prog[progIdx] != '\n') ++progIdx;

if(progIdx < prog.length) progIdx++;

}

// Assign a variable a value.

private void assignment() throws InterpreterException

{

int var;

double value;

char vname;

// Get the variable name.

getToken();

vname = token.charAt(0);

if(!Character.isLetter(vname)) {

handleErr(NOTVAR);

return;

}

// Convert to index into variable table.

var = (int) Character.toUpperCase(vname) - 'A';

// Get the equal sign.

getToken();

if(!token.equals("=")) {

handleErr(EQUALEXPECTED);

return;

}

// Get the value to assign.

value = evaluate();

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 4 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:18 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Assign the value.

vars[var] = value;

}

// Execute a simple version of the PRINT statement.

private void print() throws InterpreterException

{

double result;

int len=0, spaces;

String lastDelim = "";

do {

getToken(); // get next list item

if(kwToken==EOL || token.equals(EOP)) break;

if(tokType==QUOTEDSTR) { // is string

System.out.print(token);

len += token.length();

getToken();

}

else { // is expression

putBack();

result = evaluate();

getToken();

System.out.print(result);

// Add length of output to running total.

Double t = new Double(result);

len += t.toString().length(); // save length

}

lastDelim = token;

// If comma, move to next tab stop.

if(lastDelim.equals(",")) {

// compute number of spaces to move to next tab

spaces = 8 - (len % 8);

len += spaces; // add in the tabbing position

while(spaces != 0) {

System.out.print(" ");

spaces--;

}

}

else if(token.equals(";")) {

System.out.print(" ");

len++;

5 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:18 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

else if(kwToken != EOL && !token.equals(EOP))

handleErr(SYNTAX);

} while (lastDelim.equals(";") || lastDelim.equals(","));

if(kwToken==EOL || token.equals(EOP)) {

if(!lastDelim.equals(";") && !lastDelim.equals(","))

System.out.println();

}

else handleErr(SYNTAX);

}

// Execute a GOTO statement.

private void execGoto() throws InterpreterException

{

Integer loc;

getToken(); // get label to go to

// Find the location of the label.

loc = (Integer) labelTable.get(token);

if(loc == null)

handleErr(UNDEFLABEL); // label not defined

else // start program running at that loc

progIdx = loc.intValue();

}

// Execute an IF statement.

private void execIf() throws InterpreterException

{

double result;

result = evaluate(); // get value of expression

/* If the result is true (non-zero),

process target of IF. Otherwise move on

to next line in the program. */

if(result != 0.0) {

getToken();

if(kwToken != THEN) {

handleErr(THENEXPECTED);

return;

} // else, target statement will be executed

}

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 5 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



else findEOL(); // find start of next line

}

// Execute a FOR loop.

private void execFor() throws InterpreterException

{

ForInfo stckvar = new ForInfo();

double value;

char vname;

getToken(); // read the control variable

vname = token.charAt(0);

if(!Character.isLetter(vname)) {

handleErr(NOTVAR);

return;

}

// Save index of control var.

stckvar.var = Character.toUpperCase(vname) - 'A';

getToken(); // read the equal sign

if(token.charAt(0) != '=') {

handleErr(EQUALEXPECTED);

return;

}

value = evaluate(); // get initial value

vars[stckvar.var] = value;

getToken(); // read and discard the TO

if(kwToken != TO) handleErr(TOEXPECTED);

stckvar.target = evaluate(); // get target value

/* If loop can execute at least once,

push info on stack. */

if(value >= vars[stckvar.var]) {

stckvar.loc = progIdx;

fStack.push(stckvar);

}

else // otherwise, skip loop code altogether

while(kwToken != NEXT) getToken();

}

5 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Execute a NEXT statement.

private void next() throws InterpreterException

{

ForInfo stckvar;

try {

// Retrieve info for this For loop.

stckvar = (ForInfo) fStack.pop();

vars[stckvar.var]++; // increment control var

// If done, return.

if(vars[stckvar.var] > stckvar.target) return;

// Otherwise, restore the info.

fStack.push(stckvar);

progIdx = stckvar.loc;  // loop

} catch(EmptyStackException exc) {

handleErr(NEXTWITHOUTFOR);

}

}

// Execute a simple form of INPUT.

private void input() throws InterpreterException

{

int var;

double val = 0.0;

String str;

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

getToken(); // see if prompt string is present

if(tokType == QUOTEDSTR) {

// if so, print it and check for comma

System.out.print(token);

getToken();

if(!token.equals(",")) handleErr(SYNTAX);

getToken();

}

else System.out.print("? "); // otherwise, prompt with ?

// get the input var

var =  Character.toUpperCase(token.charAt(0)) - 'A';

try {

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 5 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



str = br.readLine();

val = Double.parseDouble(str); // read the value

} catch (IOException exc) {

handleErr(INPUTIOERROR);

} catch (NumberFormatException exc) {

/* You might want to handle this error

differently than the other interpreter

errors. */

System.out.println("Invalid input.");

}

vars[var] = val; // store it

}

// Execute a GOSUB.

private void gosub() throws InterpreterException

{

Integer loc;

getToken();

// Find the label to call.

loc = (Integer) labelTable.get(token);

if(loc == null)

handleErr(UNDEFLABEL); // label not defined

else {

// Save place to return to.

gStack.push(new Integer(progIdx));

// Start program running at that loc.

progIdx = loc.intValue();

}

}

// Return from GOSUB.

private void greturn() throws InterpreterException

{

Integer t;

try {

// Restore program index.

t = (Integer) gStack.pop();

progIdx = t.intValue();

} catch(EmptyStackException exc) {

5 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



handleErr(RETURNWITHOUTGOSUB);

}

}

// **************** Expression Parser ****************

// Parser entry point.

private double evaluate() throws InterpreterException

{

double result = 0.0;

getToken();

if(token.equals(EOP))

handleErr(NOEXP); // no expression present

// Parse and evaluate the expression.

result = evalExp1();

putBack();

return result;

}

// Process relational operators.

private double evalExp1() throws InterpreterException

{

double l_temp, r_temp, result;

char op;

result = evalExp2();

// If at end of program, return.

if(token.equals(EOP)) return result;

op = token.charAt(0);

if(isRelop(op)) {

l_temp = result;

getToken();

r_temp = evalExp1();

switch(op) { // perform the relational operation

case '<':

if(l_temp < r_temp) result = 1.0;

else result = 0.0;

break;

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 5 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



case LE:

if(l_temp <= r_temp) result = 1.0;

else result = 0.0;

break;

case '>':

if(l_temp > r_temp) result = 1.0;

else result = 0.0;

break;

case GE:

if(l_temp >= r_temp) result = 1.0;

else result = 0.0;

break;

case '=':

if(l_temp == r_temp) result = 1.0;

else result = 0.0;

break;

case NE:

if(l_temp != r_temp) result = 1.0;

else result = 0.0;

break;

}

}

return result;

}

// Add or subtract two terms.

private double evalExp2() throws InterpreterException

{

char op;

double result;

double partialResult;

result = evalExp3();

while((op = token.charAt(0)) == '+' || op == '-') {

getToken();

partialResult = evalExp3();

switch(op) {

case '-':

result = result - partialResult;

break;

case '+':

result = result + partialResult;

break;

}

5 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 5 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

}

return result;

}

// Multiply or divide two factors.

private double evalExp3() throws InterpreterException

{

char op;

double result;

double partialResult;

result = evalExp4();

while((op = token.charAt(0)) == '*' ||

op == '/' || op == '%') {

getToken();

partialResult = evalExp4();

switch(op) {

case '*':

result = result * partialResult;

break;

case '/':

if(partialResult == 0.0)

handleErr(DIVBYZERO);

result = result / partialResult;

break;

case '%':

if(partialResult == 0.0)

handleErr(DIVBYZERO);

result = result % partialResult;

break;

}

}

return result;

}

// Process an exponent.

private double evalExp4() throws InterpreterException

{

double result;

double partialResult;

double ex;

int t;

result = evalExp5();

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



5 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

if(token.equals("^")) {

getToken();

partialResult = evalExp4();

ex = result;

if(partialResult == 0.0) {

result = 1.0;

} else

for(t=(int)partialResult-1; t > 0; t--)

result = result * ex;

}

return result;

}

// Evaluate a unary + or -.

private double evalExp5() throws InterpreterException

{

double result;

String  op;

op = "";

if((tokType == DELIMITER) &&

token.equals("+") || token.equals("-")) {

op = token;

getToken();

}

result = evalExp6();

if(op.equals("-")) result = -result;

return result;

}

// Process a parenthesized expression.

private double evalExp6() throws InterpreterException

{

double result;

if(token.equals("(")) {

getToken();

result = evalExp2();

if(!token.equals(")"))

handleErr(UNBALPARENS);

getToken();

}

else result = atom();

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 5 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

return result;

}

// Get the value of a number or variable.

private double atom() throws InterpreterException

{

double result = 0.0;

switch(tokType) {

case NUMBER:

try {

result = Double.parseDouble(token);

} catch (NumberFormatException exc) {

handleErr(SYNTAX);

}

getToken();

break;

case VARIABLE:

result = findVar(token);

getToken();

break;

default:

handleErr(SYNTAX);

break;

}

return result;

}

// Return the value of a variable.

private double findVar(String vname)

throws InterpreterException

{

if(!Character.isLetter(vname.charAt(0))){

handleErr(SYNTAX);

return 0.0;

}

return vars[Character.toUpperCase(vname.charAt(0))-'A'];

}

// Return a token to the input stream.

private void putBack()

{

if(token == EOP) return;

for(int i=0; i < token.length(); i++) progIdx--;

}

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



6 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

// Handle an error.

private void handleErr(int error)

throws InterpreterException

{

String[] err = {

"Syntax Error",

"Unbalanced Parentheses",

"No Expression Present",

"Division by Zero",

"Equal sign expected",

"Not a variable",

"Label table full",

"Duplicate label",

"Undefined label",

"THEN expected",

"TO expected",

"NEXT without FOR",

"RETURN without GOSUB",

"Closing quotes needed",

"File not found",

"I/O error while loading file",

"I/O error on INPUT statement"

};

throw new InterpreterException(err[error]);

}

// Obtain the next token.

private void getToken() throws InterpreterException

{

char ch;

tokType = NONE;

token = "";

kwToken = UNKNCOM;

// Check for end of program.

if(progIdx == prog.length) {

token = EOP;

return;

}

// Skip over white space.

while(progIdx < prog.length &&

isSpaceOrTab(prog[progIdx])) progIdx++;

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Trailing whitespace ends program.

if(progIdx == prog.length) {

token = EOP;

tokType = DELIMITER;

return;

}

if(prog[progIdx] == '\r') { // handle crlf

progIdx += 2;

kwToken = EOL;

token = "\r\n";

return;

}

// Check for relational operator.

ch = prog[progIdx];

if(ch == '<' || ch == '>') {

if(progIdx+1 == prog.length) handleErr(SYNTAX);

switch(ch) {

case '<':

if(prog[progIdx+1] == '>') {

progIdx += 2;;

token = String.valueOf(NE);

}

else if(prog[progIdx+1] == '=') {

progIdx += 2;

token = String.valueOf(LE);

}

else {

progIdx++;

token = "<";

}

break;

case '>':

if(prog[progIdx+1] == '=') {

progIdx += 2;;

token = String.valueOf(GE);

}

else {

progIdx++;

token = ">";

}

break;

}

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 6 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



6 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

tokType = DELIMITER;

return;

}

if(isDelim(prog[progIdx])) {

// Is an operator.

token += prog[progIdx];

progIdx++;

tokType = DELIMITER;

}

else if(Character.isLetter(prog[progIdx])) {

// Is a variable or keyword.

while(!isDelim(prog[progIdx])) {

token += prog[progIdx];

progIdx++;

if(progIdx >= prog.length) break;

}

kwToken = lookUp(token);

if(kwToken==UNKNCOM) tokType = VARIABLE;

else tokType = COMMAND;

}

else if(Character.isDigit(prog[progIdx])) {

// Is a number.

while(!isDelim(prog[progIdx])) {

token += prog[progIdx];

progIdx++;

if(progIdx >= prog.length) break;

}

tokType = NUMBER;

}

else if(prog[progIdx] == '"') {

// Is a quoted string.

progIdx++;

ch = prog[progIdx];

while(ch !='"' && ch != '\r') {

token += ch;

progIdx++;

ch = prog[progIdx];

}

if(ch == '\r') handleErr(MISSINGQUOTE);

progIdx++;

tokType = QUOTEDSTR;

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

else { // unknown character terminates program

token = EOP;

return;

}

}

// Return true if c is a delimiter.

private boolean isDelim(char c)

{

if((" \r,;<>+-/*%^=()".indexOf(c) != -1))

return true;

return false;

}

// Return true if c is a space or a tab.

boolean isSpaceOrTab(char c)

{

if(c == ' ' || c =='\t') return true;

return false;

}

// Return true if c is a relational operator.

boolean isRelop(char c) {

if(relops.indexOf(c) != -1) return true;

return false;

}

/* Look up a token's internal representation in the

token table. */

private int lookUp(String s)

{

int i;

// Convert to lowercase.

s = s.toLowerCase();

// See if token is in table.

for(i=0; i < kwTable.length; i++)

if(kwTable[i].keyword.equals(s))

return kwTable[i].keywordTok;

return UNKNCOM; // unknown keyword

}

}

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 6 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The Small BASIC Expression Parser
At the core of the interpreter is the expression parser. As mentioned, the parser used by Small

BASIC is adapted from the one shown in Chapter 2. If you have not yet read Chapter 2, do so

now because it provides the detailed description of the parser. Although its fundamental operation

is unchanged, a special version of the parser is required for Small BASIC.

Many of the changes to the parser allow it to handle the syntax of the Small BASIC language.

For example, the parser must be able to recognize the keywords of the language, it must not

treat the equal sign (=) as an operator, and it must evaluate relational operators. The getToken( )

method is substantially enhanced to handle the expanded demands placed on it.

Other differences between the parser in Chapter 2 and the one used here are caused by

efficiency considerations. For example, in Chapter 2, a reference to the expression was passed

to the parser. In the Small BASIC version, a reference to the program being interpreted is

held in an instance variable shared by both the interpreter and the parser. Thus, the overhead

associated with passing the reference is avoided. Because interpreters are slow by nature,

these types of efficiency enhancements are important.

Another change in the parser is caused by the fact that the Small BASIC version operates

on an array of characters rather than on a string. Recall that the parser developed in Chapter 2

was passed a string containing the expression to evaluate. The reason for the change is efficiency.

As you know, a program is stored in a normal text file, which is a sequence of characters, not

a string. Thus, when the interpreter loads the file prior to execution, it reads the file into a

character array. Although it would have been possible to convert this array into a string, to

do so would introduce a needless inefficiency.

Since the Small BASIC expression parser uses the same techniques as described in

Chapter 2, you will have no trouble following its operation and we will not examine it

in detail here. However, before moving on to the interpreter, a few general comments

are in order. We will begin by explaining precisely what an expression is as it relates

to Small BASIC.

Small BASIC Expressions
As they apply to the small BASIC interpreter developed in this chapter, expressions are

comprised of the following items:

� Integers

� The operators +  –  /  *  ^  =  (  )  <  >  >=  <=  <>

� Variables

In Small BASIC, the ^ indicates exponentiation. The = is used for both assignments and

for equality. However, relative to BASIC expressions, it is only an operator when used in a

relational expression. (In standard BASIC, assignment is a statement and not an operation.)

Not equal is denoted as < >. These items can be combined in expressions according to the

rules of algebra. Here are some examples:

6 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:19 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



7 – 8

(100 – 5) * 14/6

a + b – c

10 ^ 5

A < B

The precedence of the operators is shown here:

Highest (   )

unary +   –

^

*   /

+   –

Lowest <   >   <=   >=   <>   =

Operators of equal precedence evaluate from left to right.

Small BASIC makes the following assumptions:

� All variables are single letters; this means that 26 variables, the letters A through Z,

are available for use.

� The variables are not case sensitive; 'a' and 'A' will be treated as the same variable.

� All numbers are doubles.

� No string variables are supported, although quoted string constants can be used for

writing messages to the screen.

These assumptions are built in to the parser.

Small BASIC Tokens
At the core of the Small BASIC parser is the getToken( ) method. This method is an expanded

version of the one shown in Chapter 2. The changes allow it to tokenize not just numeric

expressions, but also other elements of the Small BASIC language, such as keywords

and strings.

In Small BASIC, each keyword token has two formats: external and internal. The external

format is the text form that you use when writing a program. For example, "PRINT" is the

external form of the PRINT keyword. Although it is possible for an interpreter to be designed

in such a way that each token is used in its external string form, this is seldom (if ever) done

because it is inefficient. Instead, Small BASIC operates on the internal format of a token,

which is simply an integer value. For example, the PRINT command is represented by 1; the

INPUT command by 2; and so on. The advantage of the internal representation is that much

faster code can be written using integers rather than strings. It is the job of getToken( ) to

convert the token from its external format into its internal format.

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 6 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:20 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The Small BASIC getToken( ) method is shown here. It progresses through the program

one character at a time.

// Obtain the next token.

private void getToken() throws InterpreterException

{

char ch;

tokType = NONE;

token = "";

kwToken = UNKNCOM;

// Check for end of program.

if(progIdx == prog.length) {

token = EOP;

return;

}

// Skip over white space.

while(progIdx < prog.length &&

isSpaceOrTab(prog[progIdx])) progIdx++;

// Trailing whitespace ends program.

if(progIdx == prog.length) {

token = EOP;

tokType = DELIMITER;

return;

}

if(prog[progIdx] == '\r') { // handle crlf

progIdx += 2;

kwToken = EOL;

token = "\r\n";

return;

}

// Check for relational operator.

ch = prog[progIdx];

if(ch == '<' || ch == '>') {

if(progIdx+1 == prog.length) handleErr(SYNTAX);

switch(ch) {

case '<':

if(prog[progIdx+1] == '>') {

progIdx += 2;;

6 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:20 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



token = String.valueOf(NE);

}

else if(prog[progIdx+1] == '=') {

progIdx += 2;

token = String.valueOf(LE);

}

else {

progIdx++;

token = "<";

}

break;

case '>':

if(prog[progIdx+1] == '=') {

progIdx += 2;;

token = String.valueOf(GE);

}

else {

progIdx++;

token = ">";

}

break;

}

tokType = DELIMITER;

return;

}

if(isDelim(prog[progIdx])) {

// Is an operator.

token += prog[progIdx];

progIdx++;

tokType = DELIMITER;

}

else if(Character.isLetter(prog[progIdx])) {

// Is variable or keyword.

while(!isDelim(prog[progIdx])) {

token += prog[progIdx];

progIdx++;

if(progIdx >= prog.length) break;

}

kwToken = lookUp(token);

if(kwToken==UNKNCOM) tokType = VARIABLE;

else tokType = COMMAND;

}

else if(Character.isDigit(prog[progIdx])) {

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 6 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:20 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



6 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

// Is a number.

while(!isDelim(prog[progIdx])) {

token += prog[progIdx];

progIdx++;

if(progIdx >= prog.length) break;

}

tokType = NUMBER;

}

else if(prog[progIdx] == '"') {

// Is a quoted string.

progIdx++;

ch = prog[progIdx];

while(ch !='"' && ch != '\r') {

token += ch;

progIdx++;

ch = prog[progIdx];

}

if(ch == '\r') handleErr(MISSINGQUOTE);

progIdx++;

tokType = QUOTEDSTR;

}

else { // unknown character terminates program

token = EOP;

return;

}

}

SBasic defines the following instance variables that are used extensively by getToken( )

and the rest of the interpreter code:

private char[] prog; // refers to program array

private int progIdx; // current index into program

private String token; // holds current token

private int tokType;  // holds token's type

private int kwToken; // internal representation of a keyword

The program is stored in a character array that is referred to by prog. The specific location

at which the interpreter is operating is stored in progIdx. The string version of the token is

held in token. The token type is stored in tokType. The internal representation of a token

representing a keyword is stored in kwToken.

The Small BASIC parser recognizes five token types: DELIMITER, VARIABLE,

NUMBER, COMMAND, and QUOTESTR. DELIMITER is used both for operators

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:20 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



and parentheses. VARIABLE is used when a variable is encountered. NUMBER is for

numbers. The COMMAND type is assigned when a BASIC keyword is found. Tokens of

type COMMAND require that an action be taken by the interpreter. Type QUOTESTR is

for quoted strings.

Look closely at getToken( ). If the end of the program has been reached, then token is

assigned EOP and the method returns. Otherwise, leading spaces are skipped with the help

of the method isSpaceOrTab( ), which returns true if its argument is a space or tab. It is not

possible to use Java's Character.isWhitespace( ) method (which returns true for any whitespace

character) for this determination because BASIC recognizes the newline character as a terminator.

Thus, for Small BASIC, white space is limited to just spaces and tabs. Assuming that trailing

spaces don't end the program, once the spaces have been skipped, prog[progIdx] will be

referring to either a number, a variable, a keyword, a carriage-return/linefeed sequence, an

operator, or a quoted string.

If the next character is a carriage return, kwToken is set equal to EOL, a carriage return/line

feed sequence is stored in token, and DELIMITER is put into tokType.

Otherwise, getToken( ) checks for relational operators, which might be two-character

operators, such as <=. getToken( ) converts two-character operators into their internal, one-

character representation. The values NE, GE, and LE are defined as final values within SBasic.

Next, getToken( ) checks for the other operators. If any type of operator is found, it is returned

as a string in token and the type of DELIMITER is placed in tokType.

If the next character is not an operator, getToken( ) checks to see if it is a letter. If it is,

then the token will be either a variable, such as A or X, or a keyword, such as PRINT. The

lookUp( ) method checks to see if it is a keyword. If it is, lookUp( ) returns the appropriate

internal representation of the keyword. If it is not a keyword, then the token is assumed to be

a variable.

Otherwise, if the next character is a digit, then getToken( ) reads a number. If, instead, the

next character is a quotation mark, then a quoted string is read. Finally, if the next character

is none of the above, it is assumed that the end of the expression has been reached.

The rest of the parser works essentially the same as it did in Chapter 2 with the exception

of evalExp1( ). In Chapter 2 evalExp1( ) was used to handle the assignment operator. However,

in traditional BASIC, assignment is a statement, not an operation. Therefore, evalExp1( ) is

not used for assignment when parsing expressions found in Small BASIC programs. Instead,

it is used to evaluate the relational operators. If you use the interpreter to experiment with

other types of languages, then you may need to add a method called evalExp0( ), which

would be used to handle assignment as an operator.

One other important difference between the parser in Chapter 2 and the one used here

is that in Chapter 2, the end of the string that held the expression indicated the end of the

expression. In this version, the end of the expression is signaled by the end of the line or

anything else that is not a valid part of an expression, such as a keyword.

The Small BASIC parser recognizes only the variables A through Z. Although it will

accept long variable names, only the first letter is significant. You can modify it to enforce

single-letter variable names if you like.

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 6 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:20 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



7 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

The Interpreter
The interpreter portion of SBasic is the code that actually executes a program. In general, it is

quite easy to interpret a Small BASIC program because each statement (except for assignment)

begins with a keyword. Thus, the interpreter works by obtaining the keyword at the start of

each line and then doing what that keyword specifies. This process repeats until the entire

program has been interpreted. The remainder of this section examines each part of the interpreter

in detail.

The InterpreterException Class
At the start of the interpreter file, you will find the class InterpreterException. This is the

type of exception that the interpreter will throw if an error occurs. Code that uses SBasic

must handle this exception. Exceptions can be caused by syntax errors, by I/O errors, and

by errors in numeric expressions.

The SBasic Constructor
The constructor for SBasic is shown here:

// Constructor for SBasic.

public SBasic(String progName)

throws InterpreterException {

char tempbuf[] = new char[PROG_SIZE];

int size;

// Load the program to execute.

size = loadProgram(tempbuf, progName);

if(size != -1) {

// Create a properly sized array to hold the program.

prog = new char[size];

// Copy the program into program array.

System.arraycopy(tempbuf, 0, prog, 0, size);

}

}

The constructor is passed the name of the Small BASIC file that you want to interpret.

It then creates a temporary buffer into which this file will be read. The size of this buffer is

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:20 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 7 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

specified by PROG_SIZE, which is arbitrarily set to 10,000. This is the size of the largest

program that SBasic can interpret. You can change this size if you want.

Next, the constructor calls loadProgram( ), which actually reads the program and returns

its size, in characters, or –1 on failure. Then, a new array that is precisely the size of the

program is created and a reference to it assigned to prog. Finally, the program is copied into

this array. Thus, the size of the array referred to by prog will be exactly the same as the size

of the program.

The loadProgram( ) method is shown here:

// Load a program.

private int loadProgram(char[] p, String fname)

throws InterpreterException

{

int size = 0;

try {

FileReader fr = new FileReader(fname);

BufferedReader br = new BufferedReader(fr);

size = br.read(p, 0, PROG_SIZE);

fr.close();

} catch(FileNotFoundException exc) {

handleErr(FILENOTFOUND);

} catch(IOException exc) {

handleErr(FILEIOERROR);

}

// If file ends with an EOF mark, back up.

if(p[size-1] == (char) 26) size--;

return size; // return size of program

}

Most of this method is easily understandable, but pay special attention to these lines:

// If file ends with an EOF mark, back up.

if(p[size-1] == (char) 26) size--;

As the comment indicates, this line discards a trailing EOF mark that might end the

file. As you may know, some text editors append an end-of-file marker (which is usually

the value 26). Others do not. loadProgram( ) handles both cases by removing the mark

if it is present.

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:20 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The Keywords
The subset of BASIC that Small BASIC interprets is represented by these keywords:

PRINT INPUT IF

THEN FOR NEXT

TO GOTO GOSUB

RETURN END

The internal representation of these keywords plus EOL, for end of line, are declared as

final values in SBasic, as shown here:

// Internal representation of the Small BASIC keywords.

final int UNKNCOM = 0;

final int PRINT = 1;

final int INPUT = 2;

final int IF = 3;

final int THEN = 4;

final int FOR = 5;

final int NEXT = 6;

final int TO = 7;

final int GOTO = 8;

final int GOSUB = 9;

final int RETURN = 10;

final int END = 11;

final int EOL = 12;

Notice UNKNCOM. This value is used by the lookUp( ) method to indicate an

unknown keyword.

To facilitate the conversion of a keyword's external representation into its internal

representation, both the external and internal forms are held in a table called kwTable

comprised of Keyword objects. Both are shown here:

// This class links keywords with their keyword tokens.

class Keyword {

String keyword; // string form

int keywordTok; // internal representation

Keyword(String str, int t) {

keyword = str;

keywordTok = t;

}

}

/* Table of keywords with their internal representation.

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

7 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:20 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



All keywords must be entered lowercase. */

Keyword kwTable[] = {

new Keyword("print", PRINT), // in this table.

new Keyword("input", INPUT),

new Keyword("if", IF),

new Keyword("then", THEN),

new Keyword("goto", GOTO),

new Keyword("for", FOR),

new Keyword("next", NEXT),

new Keyword("to", TO),

new Keyword("gosub", GOSUB),

new Keyword("return", RETURN),

new Keyword("end", END)

};

The lookUp( ) method, shown next, uses kwTable to convert a token to its internal

representation. If no match is found, UNKNCOM is returned.

/* Look up a token's internal representation in the

token table. */

private int lookUp(String s)

{

int i;

// Convert to lowercase.

s = s.toLowerCase();

// See if token is in table.

for(i=0; i < kwTable.length; i++)

if(kwTable[i].keyword.equals(s))

return kwTable[i].keywordTok;

return UNKNCOM; // unknown keyword

}

The run( ) Method
After an SBasic object has been created, the program that it encapsulates is executed by

calling run( ), shown here:

// Execute the program.

public void run() throws InterpreterException {

// Initialize for new program run.

vars = new double[26];

fStack = new Stack();

labelTable = new TreeMap();

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 7 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:20 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



gStack = new Stack();

progIdx = 0;

scanLabels(); // find the labels in the program

sbInterp(); // execute

}

The run( ) method begins by allocating the array that holds the values of the variables, a

stack for FOR loops, a tree map for labels, and a stack for GOSUBs. Next, progIdx, which

holds the location of the program that is currently being interpreted, is set to 0. These fields

are set each time run( ) is called, thus enabling repeated execution of the same program.

Next, scanLabels( ) is called, which scans the program, looking for labels. When one is

found, the label and its location are stored in the labelTable map. By finding all labels prior

to execution, the execution speed of the program is improved.

Finally, sbInterp( ) is called to begin execution of the program.

The sbInterp( ) Method
The sbInterp( ) method begins and controls the execution of a Small BASIC program.

This method is shown here:

// Entry point for the Small BASIC interpreter.

private void sbInterp() throws InterpreterException

{

// This is the interpreter's main loop.

do {

getToken();

// Check for assignment statement.

if(tokType==VARIABLE) {

putBack(); // return the var to the input stream

assignment(); // handle assignment statement

}

else // is keyword

switch(kwToken) {

case PRINT:

print();

break;

case GOTO:

execGoto();

break;

case IF:

execIf();

break;

7 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:20 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



case FOR:

execFor();

break;

case NEXT:

next();

break;

case INPUT:

input();

break;

case GOSUB:

gosub();

break;

case RETURN:

greturn();

break;

case END:

return;

}

} while (!token.equals(EOP));

}

All interpreters are driven by a top-level loop that reads the next token from the program

and selects the appropriate action to process it. The Small BASIC interpreter is no exception.

This main loop is contained in sbInterp( ). It works like this. First, a token is read from the

program. Assuming no syntax errors are found, if the token is a variable, then an assignment

is taking place. Otherwise, the token must be either a line number (which is ignored) or a

keyword. If it is a keyword, the appropriate case statement is selected based on the value of

kwToken, which contains the internal representation of the keyword. Each keyword is handled

by its own method and is described in turn by the sections that follow.

Assignment
In traditional BASIC, assignment is a statement, not an operation, and this is the way it is

treated by Small BASIC, too. The general form of a BASIC assignment statement is

var-name = expression

The assignment statement is interpreted using the assignment( ) method shown here:

// Assign a variable a value.

private void assignment() throws InterpreterException

{

int var;

double value;

char vname;

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 7 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:20 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Get the variable name.

getToken();

vname = token.charAt(0);

if(!Character.isLetter(vname)) {

handleErr(NOTVAR);

return;

}

// Convert to index into variable table.

var = (int) Character.toUpperCase(vname) - 'A';

// Get the equal sign.

getToken();

if(!token.equals("=")) {

handleErr(EQUALEXPECTED);

return;

}

// Get the value to assign.

value = evaluate();

// Assign the value.

vars[var] = value;

}

The first thing assignment( ) does is read a token from the program. This will be the variable

that will have its value assigned. If it is not a valid variable, an error will be reported. Next,

the equal sign is read. Then, evaluate( ) is called to obtain the value to assign to the variable.

Finally, the value is assigned to the variable. The method is surprisingly simple and uncluttered

because the expression parser and the getToken( ) method do much of the “messy” work.

The PRINT Statement
In BASIC, the PRINT statement is actually quite powerful and flexible. While it is beyond

the scope of this chapter to create a method that supports all the functionality of the PRINT

statement, the one defined by Small BASIC supports its most important features. The general

form of the PRINT statement is

PRINT arg-list

where arg-list is a comma- or semicolon-separated list of expressions or quoted strings.

The print( ) method, shown here, interprets the PRINT statement:

// Execute a simple version of the PRINT statement.

private void print() throws InterpreterException

7 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:20 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



{

double result;

int len=0, spaces;

String lastDelim = "";

do {

getToken(); // get next list item

if(kwToken==EOL || token.equals(EOP)) break;

if(tokType==QUOTEDSTR) { // is string

System.out.print(token);

len += token.length();

getToken();

}

else { // is expression

putBack();

result = evaluate();

getToken();

System.out.print(result);

// Add length of output to running total.

Double t = new Double(result);

len += t.toString().length(); // save length

}

lastDelim = token;

// If comma, move to next tab stop.

if(lastDelim.equals(",")) {

// compute number of spaces to move to next tab

spaces = 8 - (len % 8);

len += spaces; // add in the tabbing position

while(spaces != 0) {

System.out.print(" ");

spaces--;

}

}

else if(token.equals(";")) {

System.out.print(" ");

len++;

}

else if(kwToken != EOL && !token.equals(EOP))

handleErr(SYNTAX);

} while (lastDelim.equals(";") || lastDelim.equals(","));

if(kwToken==EOL || token.equals(EOP)) {

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 7 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



if(!lastDelim.equals(";") && !lastDelim.equals(","))

System.out.println();

}

else handleErr(SYNTAX);

}

The PRINT statement can be used to print a list of variables and quoted strings on the screen.

If one item is separated from the next by a semicolon, then one space is printed between them.

If two items are separated by a comma, then the second item will be displayed beginning with

the next tab position. If the list ends in a comma or semicolon, then no newline is issued.

Here are some examples of valid PRINT statements:

PRINT X; Y; "THIS IS A STRING"

PRINT 10 / 4

PRINT

The last example simply prints a new line.

The operation of print( ) is straightforward. However, notice that print( ) makes use

of the putBack( ) method to return a token to the input stream. The reason for this is that

print( ) must look ahead to see whether the next item to be printed is a quoted string or

a numeric expression. If it is an expression, then the first term in the expression must be

returned to the input stream so that the expression parser can correctly compute the value

of the expression.

The INPUT Statement
In BASIC, the INPUT statement is used to read a value from the keyboard and assign that

value to a variable. It has two general forms. The first is

INPUT var

which displays a question mark and waits for input. The second is

INPUT "prompt-string", var

which displays a prompting message and waits for input. In both cases, the value entered by

the user is stored in var. For example,

INPUT "Enter width: ", w

displays Enter width: and stores the value entered by the user in w.

The method input( ), shown here, implements the INPUT statement.

// Execute a simple form of INPUT.

private void input() throws InterpreterException

{

int var;

7 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



double val = 0.0;

String str;

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

getToken(); // see if prompt string is present

if(tokType == QUOTEDSTR) {

// if so, print it and check for comma

System.out.print(token);

getToken();

if(!token.equals(",")) handleErr(SYNTAX);

getToken();

}

else System.out.print("? "); // otherwise, prompt with ?

// get the input var

var =  Character.toUpperCase(token.charAt(0)) - 'A';

try {

str = br.readLine(); // read the value

val = Double.parseDouble(str);

} catch (IOException exc) {

handleErr(INPUTIOERROR);

} catch (NumberFormatException exc) {

/* You might want to handle this error

differently than the other interpreter

errors. */

System.out.println("Invalid input.");

}

vars[var] = val; // store it

}

The operation of this method is straightforward and should be clear after reading the

comments. Briefly, a BufferedReader is created to read keyboard input. The next token is

obtained, which will be either a prompting string or the name of the variable receiving input.

If it is a prompting string, the string is displayed and getToken( ) is again called to obtain the

name of the variable. Next, numeric input is read and converted to a double value. This value

is then assigned to the variable.

The GOTO Statement
In traditional BASIC, the most important form of program control is the GOTO. The object

of a GOTO must be a line number. In Small BASIC, this traditional approach is preserved.

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 7 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



8 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

As you may know, early versions of BASIC required that every line in a program start with

a line number. However, Small BASIC does not require a line number for each line; one is

needed only if that line will be the target of a GOTO. Thus, in Small BASIC, line numbers

are simply labels. The general form of the GOTO is

GOTO line-number

When a GOTO statement is encountered, execution branches to the specified line number.

The main complexity associated with the GOTO is that both forward and backward jumps

must be allowed. To satisfy this constraint in an efficient manner requires that the entire program

be scanned prior to execution and the location of each label be placed in a table. Then, each

time a GOTO is executed, the location of the target line can be obtained from the table and

program control transferred to that point.

A TreeMap collection makes an ideal data structure to hold the labels and locations because

maps link a key with a value. In this case, the key is the label and the value is the index of the

label within the program. The map that holds label/index pairs is referred to by labelTable,

which is an instance variable declared as shown here:

// A map for labels.

private TreeMap labelTable;

The method that scans the program and puts each label's location in the table is called

scanLabels( ). This method is called by run( ) just before the program is interpreted. It is

shown here along with findEOL( ), which is used to find the end of a line in the program:

// Find all labels.

private void scanLabels() throws InterpreterException

{

int i;

Object result;

// See if the first token in the file is a label.

getToken();

if(tokType==NUMBER)

labelTable.put(token, new Integer(progIdx));

findEOL();

do {

getToken();

if(tokType==NUMBER) { // must be a line number

result = labelTable.put(token,

new Integer(progIdx));

if(result != null)

handleErr(DUPLABEL);

}

// If not on a blank line, find next line.

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 8 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

if(kwToken != EOL) findEOL();

} while(!token.equals(EOP));

progIdx = 0; // reset index to start of program

}

// Find the start of the next line.

private void findEOL()

{

while(progIdx < prog.length &&

prog[progIdx] != '\n') ++progIdx;

if(progIdx < prog.length) progIdx++;

}

The scanLabels( ) method works by checking the first token of each line. If the token is a

number, then it is assumed to be a line number (i.e., a label). When a label is found, it is stored

by calling put( ) on labelTable. The put( ) method of TreeMap returns a reference to the

previous mapping of the key, or null if there was not a previous mapping. Thus, if the return

value is not null, then the label has already been stored in the map. This causes an error because

no two labels in a program can be the same.

When a GOTO is encountered in a program, the execGoto( ) method, shown here, is executed:

// Execute a GOTO statement.

private void execGoto() throws InterpreterException

{

Integer loc;

getToken(); // get label to go to

// Find the location of the label.

loc = (Integer) labelTable.get(token);

if(loc == null)

handleErr(UNDEFLABEL); // label not defined

else // start program running at that loc

progIdx = loc.intValue();

}

First, the location associated with the target label is obtained by this line:

loc = (Integer) labelTable.get(token);

For TreeMap, the get( ) method returns the value associated with the key. As explained, the

key is the label and the value is the index in the program of the label. If the label is not found,

a null reference is returned. If the label is found, the value is assigned to progIdx and the

method returns. This causes execution to resume at the new value of progIdx. (Remember,

progIdx is the index at which the program is currently being executed.) If the label is not

found, an error occurs.

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The IF Statement
The Small BASIC interpreter executes a simple form of the IF statement. In Small BASIC,

no ELSE is allowed. (However, you will find it easy to add the ELSE once you understand

the operation of the IF.) The IF statement takes this general form:

IF expression rel-op expression THEN statement

Here, rel-op must be one of the relational operators. For example, X < 10 is a valid expression for

the IF. The statement that follows the THEN is executed only if the relational expression is true.

The execIf( ) method, shown here, executes the IF statement:

// Execute an IF statement.

private void execIf() throws InterpreterException

{

double result;

result = evaluate(); // get value of expression

/* If the result is true (non-zero),

process target of IF. Otherwise move on

to next line in the program. */

if(result != 0.0) {

getToken();

if(kwToken != THEN) {

handleErr(THENEXPECTED);

return;

} // else, target statement will be executed

}

else findEOL(); // find start of next line

}

The execIf( ) method operates as follows. First, the value of the relational expression is

computed. If the expression is true, the target of the THEN is executed; otherwise, findEOL( )

finds the start of the next line. Notice that if the expression is true, the execIf( ) simply returns.

This causes the main loop to iterate and the next token to be read. Since the target of an IF is

a statement, returning to the main loop causes the target statement to be executed as if it were

on its own line. If the expression is false, then the start of the next line is found before execution

returns to the main loop.

The FOR Loop
The implementation of the FOR loop presents a challenging problem that lends itself to

a rather elegant solution. The general form of the FOR loop is

8 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 8 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

FOR control-var  =  initial-value TO target-value

statements to be repeated

NEXT

The Small BASIC version of the FOR allows only positively running loops that increment the

control variable by one each iteration. The STEP command is not supported.

In BASIC, as in Java, loops may be nested to several levels. The main challenge presented

by this is keeping the information associated with each loop straight. (That is, each NEXT

must be associated with the proper FOR.) The solution to this problem is to implement the

FOR loop using a stack-based mechanism. At the top of the loop, information about the status

of the control variable, the target value, and the location of the top of the loop in the program

is pushed onto a stack. Each time the NEXT is encountered, this information is popped, the

control variable is updated, and its value is checked against the target value. If the control

value exceeds the target, the loop stops and execution continues with the line following the

NEXT statement. Otherwise, the updated information is pushed back onto the stack and

execution resumes at the top of the loop. Implementing a FOR loop in this way works not

only for a single loop but also for nested loops because the innermost NEXT will always be

associated with the innermost FOR. (The last information pushed onto the stack will be the

first information popped.) Once an inner loop terminates, its information is popped from

the stack and, if it exists, an outer loop's information comes to the top of the stack. Thus,

each NEXT is automatically associated with its corresponding FOR.

A stack is used to hold the loop information. For this purpose Small BASIC uses one of

Java's collection classes: Stack. The loop information is contained in an object of the ForInfo

class. The stack is referred to by the fStack instance variable. These are shown here:

// Support for FOR loops.

class ForInfo {

int var; // counter variable

double target; // target value

int loc; // index in source code to loop to

}

// Stack for FOR loops.

private Stack fStack;

Stack supports push( ) and pop( ), which push an object onto the stack and pop an object

from the stack, respectively.

Two methods, called execFor( ) and next( ), handle the FOR and NEXT statements. They

are shown here:

// Execute a FOR loop.

private void execFor() throws InterpreterException

{

ForInfo stckvar = new ForInfo();

double value;

char vname;

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



getToken(); // read the control variable

vname = token.charAt(0);

if(!Character.isLetter(vname)) {

handleErr(NOTVAR);

return;

}

// Save index of control var.

stckvar.var = Character.toUpperCase(vname) - 'A';

getToken(); // read the equal sign

if(token.charAt(0) != '=') {

handleErr(EQUALEXPECTED);

return;

}

value = evaluate(); // get initial value

vars[stckvar.var] = value;

getToken(); // read and discard the TO

if(kwToken != TO) handleErr(TOEXPECTED);

stckvar.target = evaluate(); // get target value

/* If loop can execute at least once,

push info on stack. */

if(value >= vars[stckvar.var]) {

stckvar.loc = progIdx;

fStack.push(stckvar);

}

else // otherwise, skip loop code altogether

while(kwToken != NEXT) getToken();

}

// Execute a NEXT statement.

private void next() throws InterpreterException

{

ForInfo stckvar;

try {

// Retrieve info for this For loop.

stckvar = (ForInfo) fStack.pop();

vars[stckvar.var]++; // increment control var

8 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// If done, return.

if(vars[stckvar.var] > stckvar.target) return;

// Otherwise, restore the info.

fStack.push(stckvar);

progIdx = stckvar.loc;  // loop

} catch(EmptyStackException exc) {

handleErr(NEXTWITHOUTFOR);

}

}

You should be able to follow the operation of these methods by reading the comments.

Briefly, execFor( ) constructs a ForInfo object that contains the index of the loop control

variable, the target value, and the current value of progIdx. It pushes this object onto fStack.

Execution then continues until a NEXT is encountered. When this happens, fStack is popped

and the target value is compared with the current value of the loop control variable. If the target

value has not yet been reached, the loop repeats by assigning to progIdx the index stored in

loc. This index is, of course, the location of the top of the loop. This causes execution to loop

back to the FOR, and the process repeats. If the target value has been reached, execution

simply continues on after the matching NEXT statement.

As the code stands, it does not prevent a GOTO out of a FOR loop. However, jumping out

of a FOR loop will corrupt the FOR stack and should be avoided.

The stack-based solution to the FOR loop problem can be generalized. Although Small

BASIC does not implement any other loop statements, you can apply the same sort of procedure

to any type of loop, including the WHILE or DO/WHILE loops. Also, as you will see in the

next section, the stack-based solution can be applied to any language element that can be

nested, including calling subroutines.

The GOSUB
Although Small BASIC does not support true stand-alone subroutines, it does allow portions

of a program to be called by using GOSUB. To return from a subroutine, use RETURN. The

general form of a GOSUB and RETURN is

GOSUB line-num

.

.

.

line-num

subroutine code

RETURN

Calling a subroutine, even the limited subroutines implemented in Small BASIC, requires

the use of a stack. The reason for this is similar to that given for the FOR statement. It is to

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 8 5

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



8 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

allow nested subroutine calls. Because it is possible to have one subroutine call another, a

stack is necessary to ensure that a RETURN statement is associated with its proper GOSUB.

The GOSUB stack is stored in another Stack object referred to through gStack, defined as

shown here:

// Stack for gosubs.

private Stack gStack;

In gStack are stored indexes into the program. Each time a GOSUB is encountered, its

index in the program is pushed onto gStack. Each time a RETURN statement is executed,

the index of the location to return to is popped from the stack.

The gosub( ) and return( ) methods are shown here:

// Execute a GOSUB.

private void gosub() throws InterpreterException

{

Integer loc;

getToken();

// Find the label to call.

loc = (Integer) labelTable.get(token);

if(loc == null)

handleErr(UNDEFLABEL); // label not defined

else {

// Save place to return to.

gStack.push(new Integer(progIdx));

// Start program running at that loc.

progIdx = loc.intValue();

}

}

// Return from GOSUB.

private void greturn() throws InterpreterException

{

Integer t;

try {

// Restore program index.

t = (Integer) gStack.pop();

progIdx = t.intValue();

} catch(EmptyStackException exc) {

handleErr(RETURNWITHOUTGOSUB);

}

}

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 8 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

The GOSUB statement works like this. When a GOSUB is encountered, the target line

number is looked up and stored in loc. Next, the current value of progIdx is pushed onto the

GOSUB stack. (This is the point in the program that the subroutine will return to once it is

finished.) Finally, the index stored in loc is assigned to progIdx. This causes program execution

to jump to the start of the subroutine. When a RETURN is encountered, the GOSUB stack is

popped and this value is assigned to progIDx, causing execution to continue on to the next

line after the GOSUB statement.

Because return addresses are stored on the GOSUB stack, subroutines may be nested. The

most recently called subroutine will be the one returned from when its RETURN statement is

encountered. (That is, the return address of the most recently called subroutine will be on the

top of the gstack stack.) This process allows GOSUBs to be nested to any depth.

The END Statement
The END keyword signifies the end of program execution. It is not always needed because the

physical end of the program also causes program execution to stop. END is simply used to

end the program before the end of the file has been reached. Its only action is to cause the

sbInterp( ) method to return, thus ending execution.

Using Small BASIC
To use SBasic, first create an SBasic object, specifying the name of the file that you want to

interpret. Then call run( ). You must remember to catch any InterpreterExceptions that might

be thrown.

The following program lets you run any Small BASIC program you want by specifying its

name on the command line:

// Demonstrate the Small BASIC Interpreter.

class SBDemo {

public static void main(String args[])

{

if(args.length != 1) {

System.out.println("Usage: sbasic <filename>");

return;

}

try {

SBasic ob = new SBasic(args[0]);

ob.run();

} catch(InterpreterException exc) {

System.out.println(exc);

}

}

}

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Compile SBDemo like this:

javac SBasic.java SBDemo.java

Execute SBDemo with the name of a Small BASIC program as the first command-line

parameter. For example, to interpret a program called TEST.BAS, use this command line:

java SBDemo TEST.BAS

Here is a short Small BASIC program you can try:

PRINT "This program converts gallons to liters."

100 GOSUB 200

INPUT "Again? (1 or 0): ", x

IF x = 1 THEN GOTO 100

END

200 INPUT "Enter gallons: ", g

l = g * 3.7854

PRINT g; "gallons is"; l; "liters."

RETURN

Here is sample output produced when this program is run:

This program converts gallons to liters.

Enter gallons: 10

10.0 gallons is 37.854 liters.

Again? (1 or 0): 1

Enter gallons: 4

4.0 gallons is 15.1416 liters.

Again? (1 or 0): 0

More Small BASIC Sample Programs
Here is a sampling of programs that Small BASIC will execute. Notice that both upper- and

lowercase are supported. That is, Small BASIC is not case sensitive. Thus, keywords and variables

can be entered in either case. In addition to the programs shown here, you will want to write

several of your own. Also, try writing programs that have syntax errors and observe the way

Small BASIC reports them.

The following program exercises all of the features supported by Small BASIC:

PRINT "This program demonstrates all features."

FOR X = 1 TO 100

PRINT X; X/2, X; X*X

NEXT

GOSUB 300

PRINT "hello"

8 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



INPUT H

IF H<11 THEN GOTO 200

PRINT 12-4/2

PRINT 100

200 A = 100/2

IF A>10 THEN PRINT "this is ok"

PRINT A

PRINT A+34

INPUT H

PRINT H

INPUT "this is a test ", y

PRINT H+Y

END

300 PRINT "this is a subroutine"

RETURN

The next program demonstrates nested subroutines:

PRINT "This program demonstrates nested GOSUBs."

INPUT "enter a number: ", I

GOSUB 100

END

100 FOR T = 1 TO I

X = X + I

GOSUB 150

NEXT

RETURN

150 PRINT X;

RETURN

The following program illustrates the INPUT statement:

PRINT "This program computes the volume of a cube."

INPUT "Enter length of first side ", l

INPUT "Enter length of second side ", w

INPUT "Enter length of third side ", d

t = l * w * d

PRINT "Volume is ", t

The next program illustrates nested FOR loops:

PRINT "This program demonstrates nested FOR loops."

FOR X = 1 TO 100

FOR Y = 1 TO 10

C h a p t e r 3 : I m p l e m e n t i n g L a n g u a g e I n t e r p r e t e r s i n J a v a 8 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:22 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



9 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 3

PRINT X; Y; X*Y

NEXT

NEXT

The following program exercises all of the relational operators:

PRINT "This demonstrates all of the relational operators."

A = 10

B = 20

IF A = B THEN PRINT "A = B"

IF A <> B THEN PRINT "A <> B"

IF A < B THEN PRINT "A < B"

IF A > B THEN PRINT "A > B"

IF A >= B THEN PRINT "A >= B"

IF A <= B THEN PRINT "A <= B"

Enhancing and Expanding the Interpreter
It is quite easy to add statements to the Small BASIC interpreter. Just follow the general

format taken by the statements presented in the chapter. To add different variable types, you

will need to create a class that stores the type and the value of the variable, and then use an

array of these objects to store the variables.

Creating Your Own Computer Language
While enhancing or expanding Small BASIC is a good way to become more familiar with

its operation and with the way language interpreters work, you are not limited to the BASIC

language. You can use the same techniques described in this chapter to write an interpreter

for just about any computer language, including a simplified subset of Java. You can even

invent your own language that reflects your own programming style and personality. In fact,

the interpreter skeleton used by Small BASIC is a perfect “test bench” for any type of special

language feature you might want to experiment with. For example, to add a REPEAT/UNTIL

loop to the interpreter, you need to follow these steps:

1. Add REPEAT and UNTIL as keywords and define integer values for them.

2. Add REPEAT and UNTIL to the main loop switch statement.

3. Define repeat( ) and until( ) methods that process the REPEAT and UNTIL

statements. (Use execFor( ) and next( ) as starting points.)

For those readers who enjoy a challenge, try creating a script language that automates

various computing tasks, such as copying or erasing files, compiling a program, and so on.

Then create an interpreter for that language. Such a language could provide an alternative

to using standard batch files. In essence, you could adapt the interpreter to support your own

proprietary batch processing scheme.

P:\010Comp\ApDev\971-3\ch03.vp
Monday, July 07, 2003 10:03:22 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



CHAPTER

4
Creating a Download

Manager in Java
by James Holmes

91

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 5:18:22 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



Have you ever had an Internet download interrupted before its completion, just

to put you back at square one? If you connect to the Internet with a dialup

connection, it’s very likely that you’ve run into this all too common nuisance.

Everything from call waiting disconnects to computer crashes can leave a download dead

in its tracks. To say the least, restarting a download from scratch over and over can be

a very time-consuming and frustrating experience.

A little-known fact is that many interrupted downloads can be resumed. This allows you to

recommence downloading from the point at which a download terminates instead of having

to begin anew. However, most of today’s Internet browsers either don’t make this feature

readily available or make it overly cumbersome to use. Enter the Download Manager: a tool

that manages Internet downloads for you and makes simple work of resuming interrupted

downloads.

At the core of the Download Manager’s usefulness is its ability to take advantage of

downloading only specific portions of a file. In a classic download scenario, a whole file

is downloaded from beginning to end. If the transmission of the file is interrupted for any

reason, the progress made toward completing the downloading of the file is lost. On the

contrary, the Download Manager can pick up from where an interruption occurs and then

download only the file’s remaining fragment. Not all downloads are created equal, though,

and there are some that simply cannot be resurrected. Details on which files are and aren’t

resumable are explained in the following section.

Not only is the Download Manager a useful utility, it is an excellent illustration of the power

and succinctness of Java’s built-in APIs—especially as they apply to interfacing to the Internet.

The previous two chapters showed the fundamental elegance of the Java language; this and

the following three chapters demonstrate the ease with which Java programs can access the

Internet. Because the Internet was a driving force behind the creation of Java, it should come

as no surprise that Java’s networking capabilities are unsurpassed. For example, attempting

to create the Download Manager in another language, such as C++, would entail significantly

more trouble and effort. Of course, that is the art of Java!

Understanding Internet Downloads
To understand and appreciate the Download Manager, it’s necessary to shed some light on

how Internet downloads really work.

Internet downloads in their simplest form are merely client/server transactions. The client,

your browser, requests to download a file from a server on the Internet. The server then

responds by sending the requested file to your browser. In order for clients to communicate

with servers, they must have an established protocol for doing so. The most common

protocols for downloading files are File Transfer Protocol (FTP) and Hypertext Transfer

Protocol (HTTP). FTP is usually associated generically with exchanging files between

computers, where as HTTP is usually associated specifically with transferring Web pages

and their related files (i.e., graphics, sounds, and so on). Over time, as the World Wide Web

has grown in popularity, HTTP has become the dominant protocol for downloading files

from the Internet. FTP is definitely not extinct, though.

9 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:34 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



For brevity’s sake, the Download Manager developed in this chapter will only support

HTTP downloads. Nonetheless, adding support for FTP would be an excellent exercise

for extending the code. HTTP downloads come in two forms: resumable (HTTP 1.1) and

nonresumable (HTTP 1.0). The difference between these two forms lies in the way files can

be requested from servers. With the antiquated HTTP 1.0, a client can only request that a

server send it a file, whereas with HTTP 1.1 a client can request that a server send it a file

or only a specific portion of a file. This is the feature the Download Manager is built on.

An Overview of the Download Manager
The Download Manager uses a simple yet effective GUI interface built with Java’s Swing

libraries. The Download Manager window is shown in Figure 4-1. The use of Swing gives

the interface a crisp, modern look and feel.

The GUI maintains a list of downloads that are currently being managed. Each download

in the list reports its URL, size of the file in bytes, progress as a percentage toward

completion, and current status. The downloads can each be in one of the following different

states: Downloading, Paused, Complete, Error, or Cancelled. The GUI also has controls for

adding downloads to the list and for changing the state of each download in the list. When

a download in the list is selected, depending on its current state, it can be paused, resumed,

cancelled, or removed from the list altogether.

The Download Manager is broken into a few classes for natural separation of functional

components. These are the Download, DownloadsTableModel, ProgressRenderer, and

DownloadManager classes, respectively. The DownloadManager class is responsible for

the GUI interface and makes use of the DownloadsTableModel and ProgressRenderer

classes for displaying the current list of downloads. The Download class represents a “managed”

download and is responsible for performing the actual downloading of a file. In the following

sections, we’ll walk through each of these classes in detail, highlighting their inner workings

and explaining how they relate to each other.

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 9 3

AppDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 4

Figure 4-1 The Download Manager GUI Interface

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:34 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The Download Class
The Download class is the workhorse of the Download Manager. Its primary purpose is to

download a file and save that file’s contents to disk. Each time a new download is added to

the Download Manager, a new Download object is instantiated to handle the download.

The Download Manager has the ability to download multiple files at once. To achieve

this, it’s necessary for each of the simultaneous downloads to run independently. It’s also

necessary for each individual download to manage its own state so that it can be reflected

in the GUI. This is accomplished with the Download class.

The entire code for Download is shown here. Notice that it extends Observable and

implements Runnable. Each part is examined in detail in the sections that follow.

import java.io.*;

import java.net.*;

import java.util.*;

// This class downloads a file from a URL.

class Download extends Observable implements Runnable {

// Max size of download buffer.

private static final int MAX_BUFFER_SIZE = 1024;

// These are the status names.

public static final String STATUSES[] = {"Downloading",

"Paused", "Complete", "Cancelled", "Error"};

// These are the status codes.

public static final int DOWNLOADING = 0;

public static final int PAUSED = 1;

public static final int COMPLETE = 2;

public static final int CANCELLED = 3;

public static final int ERROR = 4;

private URL url; // download URL

private int size; // size of download in bytes

private int downloaded; // number of bytes downloaded

private int status; // current status of download

// Constructor for Download.

public Download(URL url) {

this.url = url;

size = -1;

downloaded = 0;

status = DOWNLOADING;

// Begin the download.

9 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:34 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



download();

}

// Get this download's URL.

public String getUrl() {

return url.toString();

}

// Get this download's size.

public int getSize() {

return size;

}

// Get this download's progress.

public float getProgress() {

return ((float) downloaded / size) * 100;

}

// Get this download's status.

public int getStatus() {

return status;

}

// Pause this download.

public void pause() {

status = PAUSED;

stateChanged();

}

// Resume this download.

public void resume() {

status = DOWNLOADING;

stateChanged();

download();

}

// Cancel this download.

public void cancel() {

status = CANCELLED;

stateChanged();

}

// Mark this download as having an error.

private void error() {

status = ERROR;

C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 9 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:35 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



stateChanged();

}

// Start or resume downloading.

private void download() {

Thread thread = new Thread(this);

thread.start();

}

// Get file name portion of URL.

private String getFileName(URL url) {

String fileName = url.getFile();

return fileName.substring(fileName.lastIndexOf('/') + 1);

}

// Download file.

public void run() {

RandomAccessFile file = null;

InputStream stream = null;

try {

// Open connection to URL.

HttpURLConnection connection =

(HttpURLConnection) url.openConnection();

// Specify what portion of file to download.

connection.setRequestProperty("Range",

"bytes=" + downloaded + "-");

// Connect to server.

connection.connect();

// Make sure response code is in the 200 range.

if (connection.getResponseCode() / 100 != 2) {

error();

}

// Check for valid content length.

int contentLength = connection.getContentLength();

if (contentLength < 1) {

error();

}

/* Set the size for this download if it

hasn't been already set. */

9 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:35 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



if (size == -1) {

size = contentLength;

stateChanged();

}

// Open file and seek to the end of it.

file = new RandomAccessFile(getFileName(url), "rw");

file.seek(downloaded);

stream = connection.getInputStream();

while (status == DOWNLOADING) {

/* Size buffer according to how much of the

file is left to download. */

byte buffer[];

if (size - downloaded > MAX_BUFFER_SIZE) {

buffer = new byte[MAX_BUFFER_SIZE];

} else {

buffer = new byte[size - downloaded];

}

// Read from server into buffer.

int read = stream.read(buffer);

if (read == -1)

break;

// Write buffer to file.

file.write(buffer, 0, read);

downloaded += read;

stateChanged();

}

/* Change status to complete if this point was

reached because downloading has finished. */

if (status == DOWNLOADING) {

status = COMPLETE;

stateChanged();

}

} catch (Exception e) {

error();

} finally {

// Close file.

if (file != null) {

try {

file.close();

} catch (Exception e) {}

C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 9 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:35 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

// Close connection to server.

if (stream != null) {

try {

stream.close();

} catch (Exception e) {}

}

}

}

// Notify observers that this download's status has changed.

private void stateChanged() {

setChanged();

notifyObservers();

}

}

The Download Variables
Download begins by declaring several static final variables that specify the various constants

used by the class. Next, four instance variables are declared. The url variable holds the Internet

URL for the file being downloaded; the size variable holds the size of the download file in

bytes; the downloaded variable holds the number of bytes that have been downloaded thus

far; and the status variable indicates the download’s current status.

The Download Constructor
Download’s constructor is passed a reference to the URL to download in the form of a URL

object, which is assigned to the url instance variable. It then sets the remaining instance

variables to their initial states and calls the download( ) method. Notice that size is set to –1

to indicate there is no size yet.

The download( ) Method
The download( ) method creates a new Thread object, passing it a reference to the

invoking Download instance. As mentioned before, it’s necessary for each download to

run independently. In order for the Download class to act alone, it must execute in its own

thread. Java has excellent built-in support for threads and makes using them a snap. To use

threads, the Download class simply implements the Runnable interface by overriding the

run( ) method. After the download( ) method has instantiated a new Thread instance,

passing its constructor the Runnable Download class, it calls the thread’s start( ) method.

Invoking the start( ) method causes the Runnable instance’s (the Download class’) run( )

method to be executed.

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

9 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:35 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 9 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

The run( ) Method
When the run( ) method executes, the actual downloading gets under way. Because of its

size and importance, we will examine it closely, line by line. The run( ) method begins

with these lines:

RandomAccessFile file = null;

InputStream stream = null;

try {

// Open connection to URL.

HttpURLConnection connection =

(HttpURLConnection) url.openConnection();

First, run( ) sets up variables for the network stream that the download’s contents will

be read from and sets up the file that the download’s contents will be written to. Next, a

connection to the download’s URL is opened by calling url.openConnection( ). Since we

know that the Download Manager supports only HTTP downloads, the connection is cast to

the HttpURLConnection type. Casting the connection as a HttpURLConnection allows us

to take advantage of HTTP-specific connection features such as the getResponseCode( )

method. Note that calling url.openConnection( ) does not actually create a connection to the

URL’s server, it simply creates a new URLConnection instance associated with the URL that

later will be used to connect to the server.

After the HttpURLConnection has been created, the connection request property is set

by calling connection.setRequestProperty( ), as shown here:

// Specify what portion of file to download.

connection.setRequestProperty("Range",

"bytes=" + downloaded + "-");

Setting request properties allows extra request information to be sent to the server the

download will be coming from. In this case, the “Range” property is set. This is critically

important, as the “Range” property specifies the range of bytes that are being requested for

download from the server. Normally, all of a file’s bytes are downloaded at once. However,

if a download has been interrupted or paused, only the download’s remaining bytes should

be retrieved. Setting the “Range” property is the foundation for the Download Manager’s

operation.

The “Range” property is specified in this form:

start-byte – end-byte

For example, “0 – 12345”. However, the end byte of the range is optional. If the end byte is

absent, the range ends at the end of the file. The run( ) method never specifies the end byte

because downloads must run until the entire range is downloaded, unless paused or interrupted.

The next few lines are shown here:

// Connect to server.

connection.connect();

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:35 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Make sure response code is in the 200 range.

if (connection.getResponseCode() / 100 != 2) {

error();

}

// Check for valid content length.

int contentLength = connection.getContentLength();

if (contentLength < 1) {

error();

}

The connection.connect( ) method is called to make the actual connection to the download’s

server. Next, the response code returned by the server is checked. The HTTP protocol has a

list of response codes that indicate a server’s response to a request. HTTP response codes are

organized into numeric ranges of 100, and the 200 range indicates success. The server’s response

code is validated for being in the 200 range by calling connection.getResponseCode( ) and

dividing by 100. If the value of this division is 2, then the connection was successful.

Next, run( ) gets the content length by calling connection.getContentLength( ). The

content length represents the number of bytes in the requested file. If the content length is

less than 1, the error( ) method is called. The error( ) method updates the download’s status

to ERROR, and then calls stateChanged( ). The stateChanged( ) method will be described

in detail later.

After getting the content length, the following code checks to see if it has already been

assigned to the size variable:

/* Set the size for this download if it

hasn't been already set. */

if (size == -1) {

size = contentLength;

stateChanged();

}

As you can see, instead of assigning the content length to the size variable unconditionally,

it only gets assigned if it hasn’t already been given a value. The reason for this is because the

content length reflects how many bytes the server will be sending. If anything other than a

0-based start range is specified, the content length will only represent a portion of the file’s

size. The size variable has to be set to the complete size of the download’s file.

The next few lines of code shown here create a new RandomAccessFile using the filename

portion of the download’s URL that is retrieved with a call to the getFileName( ) method:

// Open file and seek to the end of it.

file = new RandomAccessFile(getFileName(url), "rw");

file.seek(downloaded);

The RandomAccessFile is opened in “rw” mode, which specifies that the file can be

written to and read from. Once the file is open, run( ) seeks to the end of the file by calling

1 0 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:35 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 1 0 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

the file.seek( ) method, passing in the downloaded variable. This tells the file to position

itself at the number of bytes that have been downloaded—in other words, at the end. It’s

necessary to position the file at the end in case a download has been resumed. If a download

is resumed, the newly downloaded bytes are appended to the file and they don’t overwrite any

previously downloaded bytes. After preparing the output file, a network stream handle to the

open server connection is obtained by calling connection.getInputStream(), as shown here:

stream = connection.getInputStream();

The heart of all the action begins next with a while loop:

while (status == DOWNLOADING) {

/* Size buffer according to how much of the

file is left to download. */

byte buffer[];

if (size - downloaded > MAX_BUFFER_SIZE) {

buffer = new byte[MAX_BUFFER_SIZE];

} else {

buffer = new byte[size - downloaded];

}

// Read from server into buffer.

int read = stream.read(buffer);

if (read == -1)

break;

// Write buffer to file.

file.write(buffer, 0, read);

downloaded += read;

stateChanged();

}

This loop is set up to run until the download’s status variable changes from

DOWNLOADING. Inside the loop, a byte buffer array is created to hold the bytes that

will be downloaded. The buffer is sized according to how much of the download is left

to complete. If there is more left to download than the MAX_BUFFER_SIZE, the MAX_

BUFFER_SIZE is used to size the buffer. Otherwise, the buffer is sized exactly at the

number of bytes left to download. Once the buffer is sized appropriately, the downloading

takes place with a stream.read( ) call. This call reads bytes from the server and places them

into the buffer, returning the count of how many bytes were actually read. If the number of

bytes read equals –1, then downloading has completed and the loop is exited. Otherwise,

downloading is not finished and the bytes that have been read are written to disk with a call

to file.write( ). Then the downloaded variable is updated, reflecting the number of bytes

downloaded thus far. Finally, inside the loop, the stateChanged( ) method is invoked. More

on this later.

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:35 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



After the loop has exited, the following code checks to see why the loop was exited:

/* Change status to complete if this point was

reached because downloading has finished. */

if (status == DOWNLOADING) {

status = COMPLETE;

stateChanged();

}

If the download’s status is still DOWNLOADING, this means that the loop exited because

downloading has been completed. Otherwise, the loop was exited because the download’s

status changed to something other than DOWNLOADING.

The run( ) method wraps up with the catch and finally blocks shown here:

} catch (Exception e) {

error();

} finally {

// Close file.

if (file != null) {

try {

file.close();

} catch (Exception e) {}

}

// Close connection to server.

if (stream != null) {

try {

stream.close();

} catch (Exception e) {}

}

}

If an exception is thrown during the download process, the catch block captures the exception

and calls the error( ) method. The finally block ensures that if the file and stream connections

have been opened, they get closed whether an exception has been thrown or not.

The stateChanged( ) Method
In order for the Download Manager to display up-to-date information on each of the

downloads it’s managing, it has to know each time a download’s information changes. To

handle this, the Observer software design pattern is used. The Observer pattern is analogous

to an announcement’s mailing list where several people register to receive announcements.

Each time there’s a new announcement, each person on the list receives a message with the

announcement. In the Observer pattern’s case, there’s an observed class with which observer

classes can register themselves to receive change notifications.

1 0 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:35 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The Download class employs the Observer pattern by extending Java’s built-in

Observable utility class. Extending the Observable class allows classes that implement

Java’s Observer interface to register themselves with the Download class to receive change

notifications. Each time the Download class needs to notify its registered Observers of a

change, the stateChanged( ) method is invoked. The stateChanged( ) method first calls the

Observable class’ setChanged( ) method to flag the class as having been changed. Next,

the stateChanged( ) method calls Observable’s notifyObservers( ) method, which

broadcasts the change notification to the registered Observers.

Action and Accessor Methods
The Download class has numerous action and accessor methods for controlling a download

and getting data from it. Each of the pause( ), resume( ), and cancel( ) action methods

simply does as its name implies: pauses, resumes, or cancels the download, respectively.

Similarly, the error( ) method marks the download as having an error. The getUrl( ),

getSize( ), getProgress( ), and getStatus( ) accessor methods each return their current

respective values.

The ProgressRenderer Class
The ProgressRenderer class is a small utility class that is used to render the current progress

of a download listed in the GUI’s “Downloads” JTable instance. Normally, a JTable instance

renders each of its table cell’s data as text. However, often it’s particularly useful to render a

cell’s data as something other than text. In the Download Manager’s case, we want to render

each of the table’s Progress column cells as progress bars. The ProgressRenderer class

shown here makes that possible. Notice that it extends JProgressBar and implements

TableCellRenderer:

import java.awt.*;

import javax.swing.*;

import javax.swing.table.*;

// This class renders a JProgressBar in a table cell.

class ProgressRenderer extends JProgressBar

implements TableCellRenderer

{

// Constructor for ProgressRenderer.

public ProgressRenderer(int min, int max) {

super(min, max);

}

/* Returns this JProgressBar as the renderer

for the given table cell. */

public Component getTableCellRendererComponent(

JTable table, Object value, boolean isSelected,

C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 1 0 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:35 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



1 0 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

boolean hasFocus, int row, int column)

{

// Set JProgressBar's percent complete value.

setValue((int) ((Float) value).floatValue());

return this;

}

}

The ProgressRenderer class takes advantage of the fact that Swing’s JTable class

has a rendering system that can accept “plug-ins” for rendering table cells. To plug into

this rendering system, first, the ProgressRenderer class has to implement Swing’s

TableCellRenderer interface. Second, a ProgressRenderer instance has to be registered

with a JTable instance; doing so instructs the JTable instance as to which cells should be

rendered with the “plug-in.”

Implementing the TableCellRenderer interface requires the class to override the

getTableCellRendererComponent( ) method. The getTableCellRendererComponent( )

method is invoked each time a JTable instance goes to render a cell for which this class

has been registered. This method is passed several variables, but in this case only the value

variable is used. The value variable holds the data for the cell being rendered and is passed

to JProgressBar’s setValue( ) method. The getTableCellRendererComponent( ) method

wraps up by returning a reference to its class. This works because the ProgressRenderer

class is a subclass of JProgessbar, which is a descendent of the AWT Component class.

The DownloadsTableModel Class
The DownloadsTableModel class houses the Download Manager’s list of downloads and is

the backing data source for the GUI’s “Downloads” JTable instance.

The DownloadsTableModel class is shown here. Notice that it extends AbstractTableModel

and implements the Observer interface:

import java.util.*;

import javax.swing.*;

import javax.swing.table.*;

// This class manages the download table's data.

class DownloadsTableModel extends AbstractTableModel

implements Observer

{

// These are the names for the table's columns.

private static final String[] columnNames = {"URL", "Size",

"Progress", "Status"};

// These are the classes for each column's values.

private static final Class[] columnClasses = {String.class,

String.class, JProgressBar.class, String.class};

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:35 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// The table's list of downloads.

private ArrayList downloadList = new ArrayList();

// Add a new download to the table.

public void addDownload(Download download) {

// Register to be notified when the download changes.

download.addObserver(this);

downloadList.add(download);

// Fire table row insertion notification to table.

fireTableRowsInserted(getRowCount() - 1, getRowCount() - 1);

}

// Get a download for the specified row.

public Download getDownload(int row) {

return (Download) downloadList.get(row);

}

// Remove a download from the list.

public void clearDownload(int row) {

downloadList.remove(row);

// Fire table row deletion notification to table.

fireTableRowsDeleted(row, row);

}

// Get table's column count.

public int getColumnCount() {

return columnNames.length;

}

// Get a column's name.

public String getColumnName(int col) {

return columnNames[col];

}

// Get a column's class.

public Class getColumnClass(int col) {

return columnClasses[col];

}

// Get table's row count.

public int getRowCount() {

return downloadList.size();

C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 1 0 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:35 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

// Get value for a specific row and column combination.

public Object getValueAt(int row, int col) {

Download download = (Download) downloadList.get(row);

switch (col) {

case 0: // URL

return download.getUrl();

case 1: // Size

int size = download.getSize();

return (size == -1) ? "" : Integer.toString(size);

case 2: // Progress

return new Float(download.getProgress());

case 3: // Status

return Download.STATUSES[download.getStatus()];

}

return "";

}

/* Update is called when a Download notifies its

observers of any changes */

public void update(Observable o, Object arg) {

int index = downloadList.indexOf(o);

// Fire table row update notification to table.

fireTableRowsUpdated(index, index);

}

}

The DownloadsTableModel class essentially is a utility class utilized by the “Downloads”

JTable instance for managing data in the table. When the JTable instance is initialized, it is

passed a DownloadsTableModel instance. The JTable then proceeds to call several methods

on the DownloadsTableModel instance to populate itself. The getColumnCount( ) method

is called to retrieve the number of columns in the table. Similarly, getRowCount( ) is used to

retrieve the number of rows in the table. The getColumnName( ) method returns a column’s

name given its ID. The getDownload( ) method takes a row ID and returns the associated

Download object from the list. The rest of the DownloadsTableModel class’ methods,

which are more involved, are detailed in the following sections.

The addDownload( ) Method
The addDownload( ) method, shown here, adds a new Download object to the list of

managed downloads and consequently a row to the table:

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

1 0 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:35 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Add a new download to the table.

public void addDownload(Download download) {

// Register to be notified when the download changes.

download.addObserver(this);

downloadList.add(download);

// Fire table row insertion notification to table.

fireTableRowsInserted(getRowCount() - 1, getRowCount() - 1);

}

This method first registers itself with the new Download as an Observer interested in receiving

change notifications. Next, the Download is added to the internal list of downloads being

managed. Finally, a table row insertion event notification is fired to alert the table that a new

row has been added.

The clearDownload( ) Method
The clearDownload( ) method, shown next, removes a Download from the list of managed

downloads:

// Remove a download from the list.

public void clearDownload(int row) {

downloadList.remove(row);

fireTableRowsDeleted(row, row);

}

After removing the Download from the internal list, a table row deleted event notification is

fired to alert the table that a row has been deleted.

The getColumnClass( ) Method
The getColumnClass( ) method, shown here, returns the class type for the data displayed

in the specified column.

// Get a column's class.

public Class getColumnClass(int col) {

return columnClasses[col];

}

All columns are displayed as text (i.e., String objects) except for the Progress column, which

is displayed as a progress bar (which is an object of type JProgressBar).

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 1 0 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:36 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The getValueAt( ) Method
The getValueAt( ) method, shown next, is called to get the current value that should be

displayed for each of the table’s cells:

// Get value for a specific row and column combination.

public Object getValueAt(int row, int col) {

Download download = (Download) downloadList.get(row);

switch (col) {

case 0: // URL

return download.getUrl();

case 1: // Size

int size = download.getSize();

return (size == -1) ? "" : Integer.toString(size);

case 2: // Progress

return new Float(download.getProgress());

case 3: // Status

return Download.STATUSES[download.getStatus()];

}

return "";

}

This method first looks up the Download corresponding to the row specified. Next, the

column specified is used to determine which one of the Download’s property values to return.

The update( ) Method
The update( ) method is shown here. It fulfills the Observer interface contract allowing the

DowloadsTableModel class to receive notifications from Download objects when they change.

/* Update is called when a Download notifies its

observers of any changes. */

public void update(Observable o, Object arg) {

int index = downloadList.indexOf(o);

// Fire table row update notification to table.

fireTableRowsUpdated(index, index);

}

This method is passed a reference to the Download that has changed, in the form of an

Observable object. Next, an index to that download is looked up in the list of downloads,

and that index is then used to fire a table row update event notification, which alerts the table

that the given row has been updated. The table will then rerender the row with the given index,

reflecting its new values.

1 0 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:36 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The DownloadManager Class
Now that the foundation has been laid by explaining each of the Download Manager’s helper

classes, we can look closely at the DownloadManager class. The DownloadManager class

is responsible for creating and running the Download Manager’s GUI. This class has a main( )

method declared, so on execution it will be invoked first. The main( ) method instantiates a

new DownloadManager class instance and then calls its show( ) method, which causes it to

be displayed.

The DownloadManager class is shown here. Notice that it extends JFrame and implements

Observer. The following sections examine it in detail.

import java.awt.*;

import java.awt.event.*;

import java.net.*;

import java.util.*;

import javax.swing.*;

import javax.swing.event.*;

// The Download Manager.

public class DownloadManager extends JFrame

implements Observer

{

// Add download text field.

private JTextField addTextField;

// Download table's data model.

private DownloadsTableModel tableModel;

// Table listing downloads.

private JTable table;

// These are the buttons for managing the selected download.

private JButton pauseButton, resumeButton;

private JButton cancelButton, clearButton;

// Currently selected download.

private Download selectedDownload;

// Flag for whether or not table selection is being cleared.

private boolean clearing;

// Constructor for Download Manager.

public DownloadManager()

{

// Set application title.

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 1 0 9

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:36 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



setTitle("Download Manager");

// Set window size.

setSize(640, 480);

// Handle window closing events.

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

actionExit();

}

});

// Set up file menu.

JMenuBar menuBar = new JMenuBar();

JMenu fileMenu = new JMenu("File");

fileMenu.setMnemonic(KeyEvent.VK_F);

JMenuItem fileExitMenuItem = new JMenuItem("Exit",

KeyEvent.VK_X);

fileExitMenuItem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionExit();

}

});

fileMenu.add(fileExitMenuItem);

menuBar.add(fileMenu);

setJMenuBar(menuBar);

// Set up add panel.

JPanel addPanel = new JPanel();

addTextField = new JTextField(30);

addPanel.add(addTextField);

JButton addButton = new JButton("Add Download");

addButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionAdd();

}

});

addPanel.add(addButton);

// Set up Downloads table.

tableModel = new DownloadsTableModel();

table = new JTable(tableModel);

table.getSelectionModel().addListSelectionListener(new

ListSelectionListener() {

public void valueChanged(ListSelectionEvent e) {

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

1 1 0 T h e A r t o f J a v a

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:36 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



tableSelectionChanged();

}

});

// Allow only one row at a time to be selected.

table.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

// Set up ProgressBar as renderer for progress column.

ProgressRenderer renderer = new ProgressRenderer(0, 100);

renderer.setStringPainted(true); // show progress text

table.setDefaultRenderer(JProgressBar.class, renderer);

// Set table's row height large enough to fit JProgressBar.

table.setRowHeight(

(int) renderer.getPreferredSize().getHeight());

// Set up downloads panel.

JPanel downloadsPanel = new JPanel();

downloadsPanel.setBorder(

BorderFactory.createTitledBorder("Downloads"));

downloadsPanel.setLayout(new BorderLayout());

downloadsPanel.add(new JScrollPane(table),

BorderLayout.CENTER);

// Set up buttons panel.

JPanel buttonsPanel = new JPanel();

pauseButton = new JButton("Pause");

pauseButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionPause();

}

});

pauseButton.setEnabled(false);

buttonsPanel.add(pauseButton);

resumeButton = new JButton("Resume");

resumeButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionResume();

}

});

resumeButton.setEnabled(false);

buttonsPanel.add(resumeButton);

cancelButton = new JButton("Cancel");

cancelButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionCancel();

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 1 1 1

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:36 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

});

cancelButton.setEnabled(false);

buttonsPanel.add(cancelButton);

clearButton = new JButton("Clear");

clearButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionClear();

}

});

clearButton.setEnabled(false);

buttonsPanel.add(clearButton);

// Add panels to display.

getContentPane().setLayout(new BorderLayout());

getContentPane().add(addPanel, BorderLayout.NORTH);

getContentPane().add(downloadsPanel, BorderLayout.CENTER);

getContentPane().add(buttonsPanel, BorderLayout.SOUTH);

}

// Exit this program.

private void actionExit() {

System.exit(0);

}

// Add a new download.

private void actionAdd() {

URL verifiedUrl = verifyUrl(addTextField.getText());

if (verifiedUrl != null) {

tableModel.addDownload(new Download(verifiedUrl));

addTextField.setText(""); // reset add text field

} else {

JOptionPane.showMessageDialog(this,

"Invalid Download URL", "Error",

JOptionPane.ERROR_MESSAGE);

}

}

// Verify download URL.

private URL verifyUrl(String url) {

// Only allow HTTP URLs.

if (!url.toLowerCase().startsWith("http://"))

return null;

// Verify format of URL.

1 1 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:36 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



URL verifiedUrl = null;

try {

verifiedUrl = new URL(url);

} catch (Exception e) {

return null;

}

// Make sure URL specifies a file.

if (verifiedUrl.getFile().length() < 2)

return null;

return verifiedUrl;

}

// Called when table row selection changes.

private void tableSelectionChanged() {

/* Unregister from receiving notifications

from the last selected download. */

if (selectedDownload != null)

selectedDownload.deleteObserver(DownloadManager.this);

/* If not in the middle of clearing a download,

set the selected download and register to

receive notifications from it. */

if (!clearing) {

selectedDownload =

tableModel.getDownload(table.getSelectedRow());

selectedDownload.addObserver(DownloadManager.this);

updateButtons();

}

}

// Pause the selected download.

private void actionPause() {

selectedDownload.pause();

updateButtons();

}

// Resume the selected download.

private void actionResume() {

selectedDownload.resume();

updateButtons();

}

// Cancel the selected download.

C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 1 1 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:36 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



private void actionCancel() {

selectedDownload.cancel();

updateButtons();

}

// Clear the selected download.

private void actionClear() {

clearing = true;

tableModel.clearDownload(table.getSelectedRow());

clearing = false;

selectedDownload = null;

updateButtons();

}

/* Update each button's state based off of the

currently selected download's status. */

private void updateButtons() {

if (selectedDownload != null) {

int status = selectedDownload.getStatus();

switch (status) {

case Download.DOWNLOADING:

pauseButton.setEnabled(true);

resumeButton.setEnabled(false);

cancelButton.setEnabled(true);

clearButton.setEnabled(false);

break;

case Download.PAUSED:

pauseButton.setEnabled(false);

resumeButton.setEnabled(true);

cancelButton.setEnabled(true);

clearButton.setEnabled(false);

break;

case Download.ERROR:

pauseButton.setEnabled(false);

resumeButton.setEnabled(true);

cancelButton.setEnabled(false);

clearButton.setEnabled(true);

break;

default: // COMPLETE or CANCELLED

pauseButton.setEnabled(false);

resumeButton.setEnabled(false);

cancelButton.setEnabled(false);

clearButton.setEnabled(true);

}

} else {

1 1 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:36 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// No download is selected in table.

pauseButton.setEnabled(false);

resumeButton.setEnabled(false);

cancelButton.setEnabled(false);

clearButton.setEnabled(false);

}

}

/* Update is called when a Download notifies its

observers of any changes. */

public void update(Observable o, Object arg) {

// Update buttons if the selected download has changed.

if (selectedDownload != null && selectedDownload.equals(o))

updateButtons();

}

// Run the Download Manager.

public static void main(String[] args) {

DownloadManager manager = new DownloadManager();

manager.show();

}

}

The DownloadManager Variables
DownloadManager starts off by declaring several instance variables, most of which hold

references to the GUI controls. The selectedDownload variable holds a reference to the

Download object represented by the selected row in the table. Finally, the clearing instance

variable is a boolean flag that tracks whether or not a download is currently being cleared

from the Downloads table.

The DownloadManager Constructor
When the DownloadManager is instantiated, all of the GUI’s controls are initialized inside

its constructor. The constructor contains a lot of code, but most of it is straightforward. The

following discussion gives an overview.

First, the window’s title is set with a call to setTitle( ). Next, the setSize( ) call establishes

the window’s width and height in pixels. After that, a window listener is added by calling

addWindowListener( ), passing a WindowAdapter object that overrides the windowClosing( )

event handler. This handler calls the actionExit( ) method when the application’s window is

closed. Next, a menu bar with a “File” menu is added to the application’s window. Then the

“Add” panel, which has the Add Text field and button, is set up. An ActionListener is added

to the “Add Download” button so that the actionAdd( ) method is called each time the button

is clicked.

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 1 1 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:36 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

1 1 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

The downloads table is constructed next. A ListSelectionListener is added to the table so

that each time a row is selected in the table the tableSelectionChanged( ) method is invoked.

The table’s selection mode is also updated to ListSelectionModel.SINGLE_SELECTION

so that only one row at a time can be selected in the table. Limiting row selection to only one

row at a time simplifies the logic for determining which buttons should be enabled in the GUI

when a row in the  download table is selected. Next, a ProgressRenderer class is instantiated

and registered with the table to handle the “Progress” column. The table’s row height is

updated to the ProgressRenderer’s height by calling table.setRowHeight( ). After the table

has been assembled and tweaked, it is wrapped in a JScrollPane to make it scrollable and

then added to a panel.

Finally, the buttons panel is created. The buttons panel has Pause, Resume, Cancel, and

Clear buttons. Each of the buttons adds an ActionListener that invokes its respective action

method when it is clicked. After creating the buttons panel, all of the panels that have been

created are added to the window.

The verifyUrl( ) Method
The verifyUrl( ) method is called by the actionAdd( ) method each time a download is

added to the Download Manager. The verifyUrl( ) method is shown here:

// Verify download URL.

private URL verifyUrl(String url) {

// Only allow HTTP URLs.

if (!url.toLowerCase().startsWith("http://"))

return null;

// Verify format of URL.

URL verifiedUrl = null;

try {

verifiedUrl = new URL(url);

} catch (Exception e) {

return null;

}

// Make sure URL specifies a file.

if (verifiedUrl.getFile().length() < 2)

return null;

return verifiedUrl;

}

This method first verifies that the URL entered is an HTTP URL since only HTTP is

supported. Next, the URL being verified is used to construct a new URL class instance.

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:36 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 1 1 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

If the URL is malformed, the URL class constructor will throw an exception. Finally, this

method verifies that a file is actually specified in the URL.

The tableSelectionChanged( ) Method
The tableSelectionChanged( ) method, shown here, is called each time a row is selected in

the downloads table:

// Called when table row selection changes.

private void tableSelectionChanged() {

/* Unregister from receiving notifications

from the last selected download. */

if (selectedDownload != null)

selectedDownload.deleteObserver(DownloadManager.this);

/* If not in the middle of clearing a download,

set the selected download and register to

receive notifications from it. */

if (!clearing) {

selectedDownload =

tableModel.getDownload(table.getSelectedRow());

selectedDownload.addObserver(DownloadManager.this);

updateButtons();

}

}

This method starts by seeing if there is already a row currently selected by checking

if the selectedDownload variable is null. If the selectedDownload variable is not null,

DownloadManager removes itself as an observer of the download so that it no longer

receives change notifications. Next the clearing flag is checked. If the clearing flag is not

true, then first the selectedDownload variable is updated with the Download corresponding

to the row selected. Second, the DownloadManager is registered as an Observer with the

newly selected Download. Finally, updateButtons( ) is called to update the button states

based on the selected Download’s state.

The updateButtons( ) Method
The updateButtons( ) method updates the state of all the buttons on the button panel based

on the state of the selected download. The updateButtons( ) method is shown here:

/* Update each button's state based on the

currently selected download's status. */

private void updateButtons() {

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:36 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

1 1 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

if (selectedDownload != null) {

int status = selectedDownload.getStatus();

switch (status) {

case Download.DOWNLOADING:

pauseButton.setEnabled(true);

resumeButton.setEnabled(false);

cancelButton.setEnabled(true);

clearButton.setEnabled(false);

break;

case Download.PAUSED:

pauseButton.setEnabled(false);

resumeButton.setEnabled(true);

cancelButton.setEnabled(true);

clearButton.setEnabled(false);

break;

case Download.ERROR:

pauseButton.setEnabled(false);

resumeButton.setEnabled(true);

cancelButton.setEnabled(false);

clearButton.setEnabled(true);

break;

default: // COMPLETE or CANCELLED

pauseButton.setEnabled(false);

resumeButton.setEnabled(false);

cancelButton.setEnabled(false);

clearButton.setEnabled(true);

}

} else {

// No download is selected in table.

pauseButton.setEnabled(false);

resumeButton.setEnabled(false);

cancelButton.setEnabled(false);

clearButton.setEnabled(false);

}

}

If no download is selected in the downloads table, all of the buttons are disabled, giving

them a grayed-out appearance. However, if there is a selected download, each button’s state

will be set based on whether the Download object has a status of DOWNLOADING,

PAUSED, ERROR, COMPLETE, or CANCELLED.

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:36 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Handling Action Events
Each of DownloadManager’s GUI controls registers an ActionListener that invokes its

respective action method. ActionListeners are triggered each time an action event takes

place on a GUI control. For example, when a button is clicked, an ActionEvent is generated

and each of the button’s registered ActionListeners are notified. You may have noticed a

similarity between the way ActionListeners work and the Observer pattern discussed earlier.

That is because they are the same pattern with two different naming schemes.

Compiling and Running the Download Manager
Compile DownloadManager like this:

javac DownloadManager.java DownloadsTableModel.java

ProgressRenderer.java Download.java

Run DownloadManager like this:

javaw DownloadManager

The Download Manager is easy to use. First, enter the URL of a file that you want to

download in the text field at the top of the screen. For example, to download a file called

0072224207_code.zip from www.osborne.com, enter

http://www.osborne.com/products/0072224207/0072224207_code.zip

This is the file that contains the code for Herb’s book Java 2: The Complete Reference.

After adding a download to the Download Manager, you can manage it by selecting it in

the table. Once selected, you can pause, cancel, resume, and clear a download. Figure 4-2

shows the Download Manager in action.

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

C h a p t e r 4 : C r e a t i n g a D o w n l o a d M a n a g e r i n J a v a 1 1 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

Figure 4-2 The Download Manager in action

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:37 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Enhancing the Download Manager
The Download Manager as it stands is fully functional, with the ability to pause and

resume downloads as well as download multiple files at once; however, there are several

enhancements that you may want to try on your own. Here are some ideas: proxy server

support, FTP and HTTPS support, and drag-and-drop support. A particularly appealing

enhancement is a scheduling feature that lets you schedule a download at a specific time,

perhaps in the middle of the night when system resources are plentiful.

Note that the techniques illustrated in this chapter are not limited to downloading files

in the typical sense. There are many other practical uses for the code. For example, many

software programs distributed over the Internet come in two pieces. The first piece is a small,

compact application that can be downloaded quickly. This small application contains a mini

download manager for downloading the second piece, which is generally much larger. This

concept is quite useful, especially as the size of applications increases, which typically leads

to an increase in the potential for download interruptions. You might want to try adapting the

Download Manager for this purpose.

1 2 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 4

P:\010Comp\ApDev\971-3\ch04.vp
Monday, July 07, 2003 10:03:37 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



CHAPTER

5
Implementing an E-mail

Client in Java
By James Holmes

121

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 5:18:53 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



As all readers know, there are two primary uses of the Internet: web browsing and

e-mail. Although browsing the Web is certainly the more glamorous of the two, it

is e-mail that many users have come to rely on. Because e-mail offers a low-cost,

high-speed alternative to regular mail and flexibility that is not available with telephone calls,

it has become the communication means of choice for many today.

Despite the pervasiveness of e-mail and its importance to the Internet, few programmers

know much about how it actually works or how to write applications that use it. Frankly, the

ability to send and receive e-mail messages under your direct program control is potentially

very valuable. For example, consider an application that monitors the temperature of a

commercial freezer. You might want this application to send an e-mail to the plant manager

automatically if the temperature rises above zero. Furthermore, you might want to create a

specialized e-mail client for the plant manager that monitors all e-mail and sounds an alarm

if an e-mail from the freezer is seen.

In addition to dedicated uses of e-mail, such as that just described, there is another reason

why you might want the ability to take direct control of e-mail: security. E-mail has evolved

significantly from its beginnings where it consisted solely of plaintext messages. Today, e-mail

supports much richer formats such as HTML laden with graphics and sounds. It also supports

file attachments for transporting data with messages. The trouble is that these extra features

and formats have been exploited by malicious programmers who see e-mail as a convenient

means of delivering computer viruses, Trojan horses, and the like.

Although today’s commercial e-mail programs offer up solutions to combat viruses, with

each countermeasure comes a new threat. An alternative approach to the problem is to use an

e-mail application that simply receives e-mail but does not take any further action involving

its contents. A simple e-mail client that does not render HTML, does not display a graphic,

does not preview a photo, and does not play a sound file removes much of the potential for

exploitation or threat. Of course, such a solution is not acceptable for the world at large, but

such an e-mail client might be quite useful in certain cases—especially in situations in which

a cyberattack is ongoing.

Whatever the purpose, the ability to take full control over e-mail is a valuable skill that

will find its way into a wide array of applications. Although programming an e-mail

application can be difficult, Java—and the JavaMail API—make it easier. In this chapter a

simple, text-only e-mail client is developed. The e-mail client serves two purposes. First, it

is a fully functional e-mail application that can send and receive text-based messages. It

takes no action with other types of content. Thus, it is usable “as is” when such a minimalist

e-mail program is required. Second, it demonstrates the techniques needed to send and

receive e-mail. You can adapt these techniques for use in your own code.

E-mail Behind the Scenes
Behind the scenes, e-mail is little more than standard client/server networking; there are e-mail

clients that communicate with e-mail servers for sending and receiving e-mail messages.

E-mail clients come in several varieties, from stand-alone computer applications like the one

in this chapter to cell phones that have the ability to receive e-mail messages. Regardless

1 2 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:50 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



what client is used, it will connect to an e-mail server to transfer e-mail messages, be it to or

from the server. Communications between e-mail clients and servers follow defined protocols

so that virtually all clients and servers are compatible with one another. There are two

protocols for receiving e-mail messages: POP3 and IMAP. SMTP is the dominant protocol

for sending e-mail. Each of these protocols is explained in the following sections.

POP3
Post Office Protocol version 3 (POP3) is the dominant protocol for retrieving e-mail from

e-mail servers on the Internet. POP3 is very basic, allowing e-mail clients to access only

mail in a default “Inbox” folder.

IMAP
Internet Message Access Protocol (IMAP) is another protocol for retrieving e-mail from

e-mail servers on the Internet. IMAP has more features than POP and supports retrieving

messages from multiple accounts and folders. IMAP also supports the use of public folders

where messages are shared.

SMTP
Simple Mail Transfer Protocol (SMTP) is a protocol for sending e-mail on the Internet.

When you send a message with SMTP, a server receives the message and then routes it to

the recipient’s mail server. The message is then available for reading with POP3 or IMAP.

The General Procedure for Sending and Receiving E-mail
As mentioned earlier, both sending and receiving e-mail on the Internet follow defined protocols.

Following are samplings of typical client/server communications when sending and receiving

e-mail using those protocols.

Sending e-mail with SMTP follows this sequence of events:

1. The client connects to an e-mail server.

2. The client sends an e-mail message to the server.

3. The client closes the connection to the server.

Sending e-mail with SMTP is very simple. Client software establishes a connection with

an SMTP server and transmits the message to the server and then closes the connection. The

SMTP server then takes the message and routes it to the appropriate recipient e-mail server.

Receiving e-mail with POP3 and IMAP typically follows this process:

1. The client connects to an e-mail server.

2. The client authenticates itself with the server.

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 2 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:50 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3. The client downloads a list of messages from the server.

4. The client closes the connection to the server.

Receiving e-mail is more involved than sending e-mail, but it’s still relatively straightforward.

First, client software connects to an e-mail server, and then it authenticates itself. Authentication

is required to tell the server which account to receive e-mail for and to ensure that only the

intended receiver is receiving the messages. After authentication has successfully completed,

the client software downloads a list of new messages from the server and, finally, closes the

connection to the server.

The JavaMail API
Developing code from scratch to communicate directly with e-mail servers is a considerable

undertaking and one that few programmers would want to attempt. Fortunately, Sun

Microsystems’ JavaSoft division recognized the need for a standard e-mail processing library

in Java and created JavaMail. The JavaMail library provides a complete foundation for

developing Java-based e-mail applications, including full support for the POP3, IMAP, and

SMTP protocols. The e-mail client in this chapter makes heavy use of the JavaMail API,

showcasing its robust feature set and ease of use for creating e-mail applications.

In order to compile and run the e-mail client, you will need to have the JavaMail library

installed on your computer. JavaMail comes packaged with the Java 2 Software Development

Kit, Enterprise Edition (J2SDKEE). If you don’t already have the J2SDKEE installed on your

computer, you will need to download and install it. Alternatively, you can download just the

JavaMail library and its dependent library, the JavaBeans Activation Framework (JAF). Later,

in the “Compiling and Running the E-mail Client” section, instructions for using the JavaMail

library are detailed. Following are the JavaSoft Web site addresses for downloading JavaMail:

� Java 2 Enterprise Edition http://java.sun.com/j2ee/

� JavaMail http://java.sun.com/products/javamail/

� JavaBeans Activation Framework (JAF)

http://java.sun.com/products/javabeans/glasgow/jaf.html

An Overview of Using JavaMail
JavaMail provides a protocol-independent API for sending and receiving e-mail messages.

The API is broken up into several classes that model an e-mail system and abstract the details

of the low-level networking protocols such as SMTP and POP. Following is an introduction

to the core JavaMail classes you will see used later in this chapter.

javax.mail.Session
The javax.mail.Session class defines a basic e-mail session and manages the configuration

options and authentication information used to interact with an e-mail server. This class is

the entry point for the JavaMail API and is used internally by several of the other classes.

1 2 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:50 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 2 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

javax.mail.Store
The javax.mail.Store class is used to represent a message store, which is analogous to an

e-mail account. It also provides the access protocol that is used to store and retrieve messages.

Store is abstract, and it is essentially an interface used to access an e-mail account with a

given protocol such as POP3 or IMAP.

javax.mail.Folder
The javax.mail.Folder class represents a mailbox folder for e-mail messages. Folder objects

are used to provide a tree-like hierarchy for messages and can contain messages, other folders,

or both. Folder objects are also used for deleting messages. Folder is abstract.

javax.mail.Message
The javax.mail.Message class encapsulates an e-mail message and houses each of a message’s

fields such as its sender, recipient, date sent, subject, and the content of the message.

Message is abstract.

javax.mail.Transport
The javax.mail.Transport class encapsulates the code for sending e-mail messages. This

class’ static send( ) method is used to send the messages. Transport is abstract.

A Simple E-mail Client
The remainder of this chapter develops a simple e-mail client that is capable of sending and

receiving text-based messages. This application is useful “as is” when a minimal e-mail

client is needed, but its main purpose is to illustrate the techniques needed to access e-mail

through the JavaMail API. It also serves as a starting point for your own e-mail application

development. Figure 5-1 shows E-mail Client’s window.

At the top of the window there is a New Message button for creating new e-mail messages.

The center of the window is divided between the table of messages and the message display

area. Each message in the table lists its sender, its subject, and the date. When a message in

the table is selected, it is loaded into the message display area in the bottom half of the center

of the window. The bottom of the window holds the Reply, Forward, and Delete buttons for

working with the currently selected message.

E-mail Client’s application code is divided among the following classes:

Class Purpose
EmailClient Houses the bulk of the application, including code for setting up the GUI

and for interfacing with e-mail servers

ConnectDialog Displays a dialog box into which the user enters the connection settings

DownloadingDialog Displays a dialog box with a “Downloading” message while e-mail is being

downloaded from a server

MessageDialog Displays a dialog box used for creating messages

MessagesTableModel Holds the list of messages displayed in the e-mail client’s window

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:51 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The main class of the application is EmailClient. It contains the code that actually deals

with the sending and receiving of e-mail. The remaining four classes support EmailClient.

The following sections examine each class in detail, beginning with the support classes.

The ConnectDialog Class
The Connect dialog box, illustrated in Figure 5-2, is displayed when the E-mail Client starts

up. This dialog box prompts the user for the settings required to establish a connection to an

e-mail server.

1 2 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

Figure 5-1 E-mail Client’s GUI interface

Figure 5-2 The Connect dialog box window

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:51 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The ConnectDialog class is shown here. Notice that it extends JDialog:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/* This class displays a dialog box for entering e-mail

server connection settings. */

public class ConnectDialog extends JDialog

{

// These are the e-mail server types.

private static final String[] TYPES = {"pop3", "imap"};

// Combo box for e-mail server types.

private JComboBox typeComboBox;

// Server, username, and SMTP server text fields.

private JTextField serverTextField, usernameTextField;

private JTextField smtpServerTextField;

// Password text field.

private JPasswordField passwordField;

// Constructor for dialog box.

public ConnectDialog(Frame parent)

{

// Call super constructor, specifying that dialog box is modal.

super(parent, true);

// Set dialog box title.

setTitle("Connect");

// Handle closing events.

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

actionCancel();

}

});

// Set up settings panel.

JPanel settingsPanel = new JPanel();

settingsPanel.setBorder(

BorderFactory.createTitledBorder("Connection Settings"));

GridBagConstraints constraints;

GridBagLayout layout = new GridBagLayout();

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 2 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:51 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



settingsPanel.setLayout(layout);

JLabel typeLabel = new JLabel("Type:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(typeLabel, constraints);

settingsPanel.add(typeLabel);

typeComboBox = new JComboBox(TYPES);

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.WEST;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

constraints.weightx = 1.0D;

layout.setConstraints(typeComboBox, constraints);

settingsPanel.add(typeComboBox);

JLabel serverLabel = new JLabel("Server:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(serverLabel, constraints);

settingsPanel.add(serverLabel);

serverTextField = new JTextField(25);

constraints = new GridBagConstraints();

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

constraints.weightx = 1.0D;

layout.setConstraints(serverTextField, constraints);

settingsPanel.add(serverTextField);

JLabel usernameLabel = new JLabel("Username:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(usernameLabel, constraints);

settingsPanel.add(usernameLabel);

usernameTextField = new JTextField();

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.WEST;

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

constraints.weightx = 1.0D;

layout.setConstraints(usernameTextField, constraints);

settingsPanel.add(usernameTextField);

JLabel passwordLabel = new JLabel("Password:");

constraints = new GridBagConstraints();

1 2 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:51 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 5, 0);

layout.setConstraints(passwordLabel, constraints);

settingsPanel.add(passwordLabel);

passwordField = new JPasswordField();

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.WEST;

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 5, 5);

constraints.weightx = 1.0D;

layout.setConstraints(passwordField, constraints);

settingsPanel.add(passwordField);

JLabel smtpServerLabel = new JLabel("SMTP Server:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 5, 0);

layout.setConstraints(smtpServerLabel, constraints);

settingsPanel.add(smtpServerLabel);

smtpServerTextField = new JTextField(25);

constraints = new GridBagConstraints();

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 5, 5);

constraints.weightx = 1.0D;

layout.setConstraints(smtpServerTextField, constraints);

settingsPanel.add(smtpServerTextField);

// Set up buttons panel.

JPanel buttonsPanel = new JPanel();

JButton connectButton = new JButton("Connect");

connectButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionConnect();

}

});

buttonsPanel.add(connectButton);

JButton cancelButton = new JButton("Cancel");

cancelButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionCancel();

}

});

buttonsPanel.add(cancelButton);

// Add panels to display.

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 2 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:51 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



getContentPane().setLayout(new BorderLayout());

getContentPane().add(settingsPanel, BorderLayout.CENTER);

getContentPane().add(buttonsPanel, BorderLayout.SOUTH);

// Size dialog box to components.

pack();

// Center dialog box over application.

setLocationRelativeTo(parent);

}

// Validate connection settings and close dialog box.

private void actionConnect() {

if (serverTextField.getText().trim().length() < 1

|| usernameTextField.getText().trim().length() < 1

|| passwordField.getPassword().length < 1

|| smtpServerTextField.getText().trim().length() < 1) {

JOptionPane.showMessageDialog(this,

"One or more settings is missing.",

"Missing Setting(s)", JOptionPane.ERROR_MESSAGE);

return;

}

// Close dialog box.

dispose();

}

// Cancel connecting and exit program.

private void actionCancel() {

System.exit(0);

}

// Get e-mail server type.

public String getType() {

return (String) typeComboBox.getSelectedItem();

}

// Get e-mail server.

public String getServer() {

return serverTextField.getText();

}

// Get e-mail username.

public String getUsername() {

return usernameTextField.getText();

1 3 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:51 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

// Get e-mail password.

public String getPassword() {

return new String(passwordField.getPassword());

}

// Get e-mail SMTP server.

public String getSmtpServer() {

return smtpServerTextField.getText();

}

}

ConnectDialog begins by declaring a static final variable, TYPES, to hold the list of

e-mail server types. Next, several GUI control variables are declared. The rest of the class

is examined in detail in the sections that follow.

The ConnectDialog Constructor
ConnectDialog’s constructor is passed a reference to a parent Frame with which the dialog

box will be associated. The constructor then begins by passing the Frame reference to

JDialog’s constructor with a call to super( ). Invoking JDialog’s constructor is necessary to

specify that the dialog box will be modal. A modal dialog box blocks user input to all other

windows in the program. This feature is especially useful in GUI programming to prevent

the user from interacting with the rest of the interface elements.

Next, a panel that will hold the connection settings is created. Then each of the controls

are initialized and added to the panel. Notice that a grid bag layout is used to position the

controls in a well-defined fashion. After the Connection Settings panel has been created,

the Connect and Cancel buttons are initialized and added to a buttons panel. Both the

settings panel and the buttons panel are then added to the display. Next, pack( ) is called

to size the dialog box window to the minimum size required by its controls. Finally, a call to

setLocationRelativeTo( ) centers the dialog box over the parent window.

The actionConnect( ) Method
The actionConnect( ) method, shown here, is used to validate that all of the connection

settings have been entered and to dispose the dialog box when the Connect button is clicked,

removing it from the screen:

// Validate connection settings and close dialog box.

private void actionConnect() {

if (serverTextField.getText().trim().length() < 1

|| usernameTextField.getText().trim().length() < 1

|| passwordField.getPassword().length < 1

|| smtpServerTextField.getText().trim().length() < 1) {

JOptionPane.showMessageDialog(this,

"One or more settings is missing.",

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 3 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:51 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



"Missing Setting(s)", JOptionPane.ERROR_MESSAGE);

return;

}

// Close dialog box.

dispose();

}

Since each of the Connect dialog box’s settings are required, actionConnect( ) begins by

validating that they have all been entered. If one or more settings are missing, an error dialog

box is displayed to notify the user. Once all the settings have been correctly entered, the

dispose( ) method is called to close the dialog box.

The actionCancel( ) Method
The actionCancel( ) method, shown here, is called when the Cancel button in the dialog box

is clicked or when the dialog box is closed:

// Cancel connecting and exit program.

private void actionCancel() {

System.exit(0);

}

Canceling the Connect dialog box results in E-mail Client being shut down with a call to

System.exit( ). E-mail Client is terminated in this scenario because it cannot function without

an e-mail server connection.

Accessor Methods
The ConnectDialog class has a number of accessor methods for retrieving the connection

settings entered in the dialog box. Each of the getType( ), getServer( ), getUsername( ),

getPassword( ), and getSmtpServer( ) methods simply returns the value entered into its

corresponding control.

The DownloadingDialog Class
Immediately after the Connect dialog box has been disposed, the Downloading dialog box

illustrated in Figure 5-3 is launched. This dialog box tells the user that e-mail messages are

being downloaded. Additionally, because the Downloading dialog box is modal, it prevents

the user from using any other part of E-mail Client while downloading is under way.

1 3 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

Figure 5-3 The Downloading dialog box

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:51 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The DownloadingDialog class is shown here. Notice that it extends JDialog:

import java.awt.*;

import javax.swing.*;

/* This class displays a simple dialog box instructing the user

that messages are being downloaded. */

public class DownloadingDialog extends JDialog

{

// Constructor for dialog box.

public DownloadingDialog(Frame parent)

{

// Call super constructor, specifying that dialog box is modal.

super(parent, true);

// Set dialog box title.

setTitle("E-mail Client");

// Instruct window not to close when the "X" is clicked.

setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);

// Put a message with a nice border in this dialog box.

JPanel contentPane = new JPanel();

contentPane.setBorder(

BorderFactory.createEmptyBorder(5, 5, 5, 5));

contentPane.add(new JLabel("Downloading messages..."));

setContentPane(contentPane);

// Size dialog box to components.

pack();

// Center dialog box over application.

setLocationRelativeTo(parent);

}

}

The DownloadingDialog class is clear cut in that it contains only a constructor method.

The constructor begins by mirroring the ConnectDialog constructor with super( ) and

setTitle( ) method calls. Next, the setDefaultCloseOperation( ) method is called to change

the dialog box’s behavior so that it doesn’t close when the close box is clicked. This prevents

the user from being able to close the window prematurely. After that, the message label is

added to the display with an empty (invisible) border of 5 pixels for spacing. Next, pack( )

is invoked to size the dialog box to the minimum size required by its controls. Finally, a call

to setLocationRelativeTo( ) centers the dialog box over the parent window.

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 3 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:51 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



1 3 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

The MessageDialog Class
The Message dialog box, shown in Figure 5-4, is used to enter messages that will be sent by

the EmailClient class.  It is created by the MessageDialog class.  This class is used for new

messages, as shown in Figure 5-4,  as well as reply to and forward messages.

The MessageDialog class is shown here. Notice that it extends JDialog:

import java.awt.*;
import java.awt.event.*;
import javax.mail.*;
import javax.swing.*;

// This class displays the dialog box used for creating messages.
public class MessageDialog extends JDialog
{
// Dialog box message identifiers.
public static final int NEW = 0;
public static final int REPLY = 1;
public static final int FORWARD = 2;

// Message From, To, and Subject text fields.
private JTextField fromTextField, toTextField;
private JTextField subjectTextField;

// Message content text area.
private JTextArea contentTextArea;

// Flag specifying whether or not dialog box was cancelled.
private boolean cancelled;

// Constructor for dialog box.
public MessageDialog(Frame parent, int type, Message message)
throws Exception

{
// Call super constructor, specifying that dialog box is modal.
super(parent, true);

/* Set dialog box title and get message's "To", "Subject",
and "content" values based on message type. */

String to = "", subject = "", content = "";
switch (type) {
// Reply message.
case REPLY:
setTitle("Reply To Message");

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:51 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Get message "To" value.
Address[] senders = message.getFrom();
if (senders != null || senders.length > 0) {
to = senders[0].toString();

}
to = message.getFrom()[0].toString();

// Get message subject.
subject = message.getSubject();
if (subject != null && subject.length() > 0) {
subject = "RE: " + subject;

} else {
subject = "RE:";

}

// Get message content and add "REPLIED TO" notation.
content = "\n----------------- " +

"REPLIED TO MESSAGE" +
" -----------------\n" +
EmailClient.getMessageContent(message);

break;

// Forward message.
case FORWARD:
setTitle("Forward Message");

// Get message subject.
subject = message.getSubject();
if (subject != null && subject.length() > 0) {
subject = "FWD: " + subject;

} else {
subject = "FWD:";

}

// Get message content and add "FORWARDED" notation.
content = "\n----------------- " +

"FORWARDED MESSAGE" +
" -----------------\n" +
EmailClient.getMessageContent(message);

break;

// New message.
default:
setTitle("New Message");

}

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 3 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



1 3 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

// Handle closing events.
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
actionCancel();

}
});

// Set up fields panel.
JPanel fieldsPanel = new JPanel();
GridBagConstraints constraints;
GridBagLayout layout = new GridBagLayout();
fieldsPanel.setLayout(layout);
JLabel fromLabel = new JLabel("From:");
constraints = new GridBagConstraints();
constraints.anchor = GridBagConstraints.EAST;
constraints.insets = new Insets(5, 5, 0, 0);
layout.setConstraints(fromLabel, constraints);
fieldsPanel.add(fromLabel);
fromTextField = new JTextField();
constraints = new GridBagConstraints();
constraints.fill = GridBagConstraints.HORIZONTAL;
constraints.gridwidth = GridBagConstraints.REMAINDER;
constraints.insets = new Insets(5, 5, 0, 0);
layout.setConstraints(fromTextField, constraints);
fieldsPanel.add(fromTextField);
JLabel toLabel = new JLabel("To:");
constraints = new GridBagConstraints();
constraints.anchor = GridBagConstraints.EAST;
constraints.insets = new Insets(5, 5, 0, 0);
layout.setConstraints(toLabel, constraints);
fieldsPanel.add(toLabel);
toTextField = new JTextField(to);
constraints = new GridBagConstraints();
constraints.fill = GridBagConstraints.HORIZONTAL;
constraints.gridwidth = GridBagConstraints.REMAINDER;
constraints.insets = new Insets(5, 5, 0, 0);
constraints.weightx = 1.0D;
layout.setConstraints(toTextField, constraints);
fieldsPanel.add(toTextField);
JLabel subjectLabel = new JLabel("Subject:");
constraints = new GridBagConstraints();
constraints.insets = new Insets(5, 5, 5, 0);
layout.setConstraints(subjectLabel, constraints);
fieldsPanel.add(subjectLabel);
subjectTextField = new JTextField(subject);
constraints = new GridBagConstraints();
constraints.fill = GridBagConstraints.HORIZONTAL;

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



constraints.gridwidth = GridBagConstraints.REMAINDER;
constraints.insets = new Insets(5, 5, 5, 0);
layout.setConstraints(subjectTextField, constraints);
fieldsPanel.add(subjectTextField);

// Set up content panel.
JScrollPane contentPanel = new JScrollPane();
contentTextArea = new JTextArea(content, 10, 50);
contentPanel.setViewportView(contentTextArea);

// Set up buttons panel.
JPanel buttonsPanel = new JPanel();
JButton sendButton = new JButton("Send");
sendButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
actionSend();

}
});
buttonsPanel.add(sendButton);
JButton cancelButton = new JButton("Cancel");
cancelButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
actionCancel();

}
});
buttonsPanel.add(cancelButton);

// Add panels to display.
getContentPane().setLayout(new BorderLayout());
getContentPane().add(fieldsPanel, BorderLayout.NORTH);
getContentPane().add(contentPanel, BorderLayout.CENTER);
getContentPane().add(buttonsPanel, BorderLayout.SOUTH);

// Size dialog box to components.
pack();

// Center dialog box over application.
setLocationRelativeTo(parent);

}

// Validate message fields and close dialog box.
private void actionSend() {
if (fromTextField.getText().trim().length() < 1

|| toTextField.getText().trim().length() < 1
|| subjectTextField.getText().trim().length() < 1
|| contentTextArea.getText().trim().length() < 1) {

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 3 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



JOptionPane.showMessageDialog(this,
"One or more fields is missing.",
"Missing Field(s)", JOptionPane.ERROR_MESSAGE);

return;
}

// Close dialog box.
dispose();

}

// Cancel creation of this message and close dialog box.
private void actionCancel() {
cancelled = true;

// Close dialog box.
dispose();

}

// Show dialog box.
public boolean display() {
show();

// Return whether or not display was successful.
return !cancelled;

}

// Get message's "From" field value.
public String getFrom() {
return fromTextField.getText();

}

// Get message's "To" field value.
public String getTo() {
return toTextField.getText();

}

// Get message's "Subject" field value.
public String getSubject() {
return subjectTextField.getText();

}

// Get message's "content" field value.
public String getContent() {
return contentTextArea.getText();

}
}

1 3 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The MessageDialog Variables
MessageDialog begins by declaring three static final variables, NEW, REPLY, and

FORWARD, that specify the types of messages that the dialog box handles. Next, several

GUI control variables are declared. Finally, the cancelled flag is declared for tracking

whether or not the dialog box was cancelled.

The MessageDialog Constructor
Similar to the previous two dialog classes, the MessageDialog constructor begins by calling

its parent class constructor to specify that the dialog box is modal. Next, a switch statement

is used to set the dialog box’s title based on the type of message being created. The switch

statement also serves to retrieve message fields from an original message supplied as an

argument to the constructor (REPLY and FORWARD types). These original message fields

are then used to populate MessageDialog’s fields later in the constructor. Notice that the REPLY

and FORWARD messages’ content is prefixed with text to denote the original message.

After the switch statement has concluded, the fields panel is created, and each field’s

control is initialized and added to the panel. The content and buttons panels are set up next,

and then all the panels are added to the display. Next, pack( ) is called to size the dialog box

window to the minimum size required by its GUI controls. Finally, a call to setLocation-

RelativeTo( ) centers the dialog box over the parent window.

The actionSend( ) Method
The actionSend( ) method, shown here, confirms that all the message fields have been entered

and then disposes the dialog box when the Send button is clicked:

// Validate message fields and close dialog box.

private void actionSend() {

if (fromTextField.getText().trim().length() < 1

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 3 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

Figure 5-4 The Message dialog box

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



|| toTextField.getText().trim().length() < 1

|| subjectTextField.getText().trim().length() < 1

|| contentTextArea.getText().trim().length() < 1) {

JOptionPane.showMessageDialog(this,

"One or more fields is missing.",

"Missing Field(s)", JOptionPane.ERROR_MESSAGE);

return;

}

// Close dialog box.

dispose();

}

Each of the Message dialog box’s fields are required, thus actionSend( ) verifies that all

the fields have been entered before completing successfully. If one or more fields have not

been entered, an error dialog box is displayed to notify the user. Once all the field validations

are successful, the dispose( ) method is called to close the dialog box window.

The actionCancel( ) Method
The actionCancel( ) method, shown here, is called when the Cancel button in the dialog box

is clicked or when the dialog box is closed:

// Cancel creation of this message and close dialog box.

private void actionCancel() {

cancelled = true;

// Close dialog box.

dispose();

}

Before closing the dialog box with a call to dispose( ), the actionCancel( ) method sets the

cancelled flag to true. The cancelled flag is used by the display( ) method to determine if

the dialog box has been cancelled.

The display( ) Method
Normally, a dialog box is displayed on the screen by calling its show( ) method. However, in

the case of the Message dialog box, it is essential to know whether or not the dialog box was

cancelled when it was disposed. The display( ) method, shown here, does just that, acting as

a proxy for the show( ) method:

// Show dialog box.

public boolean display() {

show();

// Return whether or not display was successful.

1 4 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



return !cancelled;

}

Notice that the inverse of the cancelled flag is returned to indicate whether the display( )

method was successful or not.

Accessor Methods
The MessageDialog class has a number of accessor methods for retrieving the message

properties entered in the dialog box. Each of the getFrom( ), getTo( ), getSubject( ), and

getContent( ) methods simply returns the value entered into its corresponding control.

The MessagesTableModel Class
The MessagesTableModel class houses E-mail Client’s list of messages and is the backing

data source for the “Messages” JTable instance.

The MessagesTableModel class is shown here. Notice that it extends AbstractTableModel:

import java.util.*;

import javax.mail.*;

import javax.swing.*;

import javax.swing.table.*;

// This class manages the e-mail table's data.

public class MessagesTableModel extends AbstractTableModel

{

// These are the names for the table's columns.

private static final String[] columnNames = {"Sender",

"Subject", "Date"};

// The table's list of messages.

private ArrayList messageList = new ArrayList();

// Sets the table's list of messages.

public void setMessages(Message[] messages) {

for (int i = messages.length - 1; i >= 0; i--) {

messageList.add(messages[i]);

}

// Fire table data change notification to table.

fireTableDataChanged();

}

// Get a message for the specified row.

public Message getMessage(int row) {

return (Message) messageList.get(row);

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 4 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

// Remove a message from the list.

public void deleteMessage(int row) {

messageList.remove(row);

// Fire table row deletion notification to table.

fireTableRowsDeleted(row, row);

}

// Get table's column count.

public int getColumnCount() {

return columnNames.length;

}

// Get a column's name.

public String getColumnName(int col) {

return columnNames[col];

}

// Get table's row count.

public int getRowCount() {

return messageList.size();

}

// Get value for a specific row and column combination.

public Object getValueAt(int row, int col) {

try {

Message message = (Message) messageList.get(row);

switch (col) {

case 0: // Sender

Address[] senders = message.getFrom();

if (senders != null || senders.length > 0) {

return senders[0].toString();

} else {

return "[none]";

}

case 1: // Subject

String subject = message.getSubject();

if (subject != null && subject.length() > 0) {

return subject;

} else {

return "[none]";

}

case 2: // Date

1 4 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 4 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

Date date = message.getSentDate();

if (date != null) {

return date.toString();

} else {

return "[none]";

}

}

} catch (Exception e) {

// Fail silently.

return "";

}

return "";

}

}

The MessagesTableModel class is a utility class used by the “Messages” JTable

instance for managing data in the table. When the JTable instance is initialized, it is passed

a MessagesTableModel instance. The JTable then proceeds to call several methods on the

MessagesTableModel instance to populate itself. The getColumnCount( ) method is called

to retrieve the number of columns in the table. Similarly, getRowCount( ) is used to retrieve

the number of rows in the table. The getColumnName( ) method returns a column’s name

given its ID. The getMessage( ) method takes a row ID and returns the associated Message

object from the list. The rest of the MessagesTableModel methods, which are more involved,

are detailed in the following sections.

The setMessages( ) Method
The setMessages( ) method, shown here, sets the list of Messages that will be displayed in

the table:

// Sets the table's list of messages.

public void setMessages(Message[] messages) {

for (int i = messages.length - 1; i >= 0; i--) {

messageList.add(messages[i]);

}

// Fire table data change notification to table.

fireTableDataChanged();

}

This method first iterates through the array of Message objects passed to the messages

parameter, adding each individual Message to the message list. Normally in this scenario, the

messages array itself would be used as the backing data source for the table model. However,

since messages can be deleted from the MessagesTableModel, using an ArrayList to hold

the messages is more convenient. After adding the messages to the message list, a table row

data change event notification is fired to alert the table that its data has been changed.

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The deleteMessage( ) Method
The deleteMessage( ) method, shown next, removes a Message from the list of managed

messages:

// Remove a message from the list.

public void deleteMessage(int row) {

messageList.remove(row);

// Fire table row deletion notification to table.

fireTableRowsDeleted(row, row);

}

After removing the Message from the internal list, a table row deleted event notification is

fired to alert the table that a row has been deleted.

The getValueAt( ) Method
The getValueAt( ) method, shown next, is called to get the current value to display for each

of the table’s cells:

// Get value for a specific row and column combination.

public Object getValueAt(int row, int col) {

try {

Message message = (Message) messageList.get(row);

switch (col) {

case 0: // Sender

Address[] senders = message.getFrom();

if (senders != null || senders.length > 0) {

return senders[0].toString();

} else {

return "[none]";

}

case 1: // Subject

String subject = message.getSubject();

if (subject != null && subject.length() > 0) {

return subject;

} else {

return "[none]";

}

case 2: // Date

Date date = message.getSentDate();

if (date != null) {

return date.toString();

} else {

return "[none]";

}

1 4 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 4 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

}

} catch (Exception e) {

// Fail silently.

return "";

}

return "";

}

This method first looks up the Message object corresponding to the selected row. Next,

the selected column is used to determine which of the Message’s property values to return.

Notice that each property retrieved from the Message is checked to see if it is null. If the

property is null, then “[none]” is returned in lieu of the property’s value. This is necessary

because some Message properties may be absent. For example, an e-mail message can be

sent without a subject or return address. Observe, also, that this method’s body is wrapped

in a try-catch block. If one of the Message object’s methods throws an exception, it is

caught with the catch block and an empty value is returned.

The EmailClient Class
Now that the foundation has been laid by explaining each of E-mail Client’s helper classes,

we can look closely at the EmailClient class. The EmailClient class is responsible for

creating and running E-mail Client’s GUI as well as performing the communications with

an e-mail server.

EmailClient has a main( ) method, so on execution it will be invoked first. The main( )

method instantiates a new EmailClient object and then calls its show( ) method, which

causes it to be displayed. After E-mail Client has been displayed on the screen, the connect( )

method is called to prompt the user for connection settings.

The EmailClient class is shown here and examined in detail in the following sections.

Notice that it extends JFrame.

import java.awt.*;

import java.awt.event.*;

import java.net.*;

import java.util.*;

import javax.mail.*;

import javax.mail.internet.*;

import javax.swing.*;

import javax.swing.event.*;

// The E-mail Client.

public class EmailClient extends JFrame

{

// Message table's data model.

private MessagesTableModel tableModel;

AppDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Table listing messages.

private JTable table;

// This is the text area for displaying messages.

private JTextArea messageTextArea;

/* This is the split panel that holds the messages

table and the message view panel. */

private JSplitPane splitPane;

// These are the buttons for managing the selected message.

private JButton replyButton, forwardButton, deleteButton;

// Currently selected message in table.

private Message selectedMessage;

// Flag for whether or not a message is being deleted.

private boolean deleting;

// This is the JavaMail session.

private Session session;

// Constructor for E-mail Client.

public EmailClient()

{

// Set application title.

setTitle("E-mail Client");

// Set window size.

setSize(640, 480);

// Handle window closing events.

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

actionExit();

}

});

// Set up File menu.

JMenuBar menuBar = new JMenuBar();

JMenu fileMenu = new JMenu("File");

fileMenu.setMnemonic(KeyEvent.VK_F);

JMenuItem fileExitMenuItem = new JMenuItem("Exit",

KeyEvent.VK_X);

fileExitMenuItem.addActionListener(new ActionListener() {

1 4 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



public void actionPerformed(ActionEvent e) {

actionExit();

}

});

fileMenu.add(fileExitMenuItem);

menuBar.add(fileMenu);

setJMenuBar(menuBar);

// Set up buttons panel.

JPanel buttonPanel = new JPanel();

JButton newButton = new JButton("New Message");

newButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionNew ();

}

});

buttonPanel.add(newButton);

// Set up messages table.

tableModel = new MessagesTableModel();

table = new JTable(tableModel);

table.getSelectionModel().addListSelectionListener(new

ListSelectionListener() {

public void valueChanged(ListSelectionEvent e) {

tableSelectionChanged();

}

});

// Allow only one row at a time to be selected.

table.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

// Set up E-mails panel.

JPanel emailsPanel = new JPanel();

emailsPanel.setBorder(

BorderFactory.createTitledBorder("E-mails"));

messageTextArea = new JTextArea();

messageTextArea.setEditable(false);

splitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT,

new JScrollPane(table), new JScrollPane(messageTextArea));

emailsPanel.setLayout(new BorderLayout());

emailsPanel.add(splitPane, BorderLayout.CENTER);

// Set up buttons panel 2.

JPanel buttonPanel2 = new JPanel();

replyButton = new JButton("Reply");

replyButton.addActionListener(new ActionListener() {

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 4 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



public void actionPerformed(ActionEvent e) {

actionReply();

}

});

replyButton.setEnabled(false);

buttonPanel2.add(replyButton);

forwardButton = new JButton("Forward");

forwardButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionForward();

}

});

forwardButton.setEnabled(false);

buttonPanel2.add(forwardButton);

deleteButton = new JButton("Delete");

deleteButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionDelete();

}

});

deleteButton.setEnabled(false);

buttonPanel2.add(deleteButton);

// Add panels to display.

getContentPane().setLayout(new BorderLayout());

getContentPane().add(buttonPanel, BorderLayout.NORTH);

getContentPane().add(emailsPanel, BorderLayout.CENTER);

getContentPane().add(buttonPanel2, BorderLayout.SOUTH);

}

// Exit this program.

private void actionExit() {

System.exit(0);

}

// Create a new message.

private void actionNew () {

sendMessage(MessageDialog.NEW, null);

}

// Called when table row selection changes.

private void tableSelectionChanged() {

/* If not in the middle of deleting a message, set

the selected message and display it. */

if (!deleting) {

1 4 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



selectedMessage =

tableModel.getMessage(table.getSelectedRow());

showSelectedMessage();

updateButtons();

}

}

// Reply to a message.

private void actionReply() {

sendMessage(MessageDialog.REPLY, selectedMessage);

}

// Forward a message.

private void actionForward() {

sendMessage(MessageDialog.FORWARD, selectedMessage);

}

// Delete the selected message.

private void actionDelete() {

deleting = true;

try {

// Delete message from server.

selectedMessage.setFlag(Flags.Flag.DELETED, true);

Folder folder = selectedMessage.getFolder();

folder.close(true);

folder.open(Folder.READ_WRITE);

} catch (Exception e) {

showError("Unable to delete message.", false);

}

// Delete message from table.

tableModel.deleteMessage(table.getSelectedRow());

// Update GUI.

messageTextArea.setText("");

deleting = false;

selectedMessage = null;

updateButtons();

}

// Send the specified message.

private void sendMessage(int type, Message message) {

// Display message dialog box to get message values.

MessageDialog dialog;

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 4 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



try {

dialog = new MessageDialog(this, type, message);

if (!dialog.display()) {

// Return if dialog box was cancelled.

return;

}

} catch (Exception e) {

showError("Unable to send message.", false);

return;

}

try {

// Create a new message with values from dialog box.

Message newMessage = new MimeMessage(session);

newMessage.setFrom(new InternetAddress(dialog.getFrom()));

newMessage.setRecipient(Message.RecipientType.TO,

new InternetAddress(dialog.getTo()));

newMessage.setSubject(dialog.getSubject());

newMessage.setSentDate(new Date());

newMessage.setText(dialog.getContent());

// Send new message.

Transport.send(newMessage);

} catch (Exception e) {

showError("Unable to send message.", false);

}

}

// Show the selected message in the content panel.

private void showSelectedMessage() {

// Show hour glass cursor while message is loaded.

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

try {

messageTextArea.setText(

getMessageContent(selectedMessage));

messageTextArea.setCaretPosition(0);

} catch (Exception e) {

showError("Unabled to load message.", false);

} finally {

// Return to default cursor.

setCursor(Cursor.getDefaultCursor());

}

}

/* Update each button's state based on whether or not

1 5 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



there is a message currently selected in the table. */

private void updateButtons() {

if (selectedMessage != null) {

replyButton.setEnabled(true);

forwardButton.setEnabled(true);

deleteButton.setEnabled(true);

} else {

replyButton.setEnabled(false);

forwardButton.setEnabled(false);

deleteButton.setEnabled(false);

}

}

// Show the application window on the screen.

public void show() {

super.show();

// Update the split panel to be divided 50/50.

splitPane.setDividerLocation(.5);

}

// Connect to e-mail server.

public void connect() {

// Display Connect dialog box.

ConnectDialog dialog = new ConnectDialog(this);

dialog.show();

// Build connection URL from Connect dialog box settings.

StringBuffer connectionUrl = new StringBuffer();

connectionUrl.append(dialog.getType() + "://");

connectionUrl.append(dialog.getUsername() + ":");

connectionUrl.append(dialog.getPassword() + "@");

connectionUrl.append(dialog.getServer() + "/");

/* Display dialog box stating that messages are

currently being downloaded from server. */

final DownloadingDialog downloadingDialog =

new DownloadingDialog(this);

SwingUtilities.invokeLater(new Runnable() {

public void run() {

downloadingDialog.show();

}

});

// Establish JavaMail session and connect to server.

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 5 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Store store = null;

try {

// Initialize JavaMail session with SMTP server.

Properties props = new Properties();

props.put("mail.smtp.host", dialog.getSmtpServer());

session = Session.getDefaultInstance(props, null);

// Connect to e-mail server.

URLName urln = new URLName(connectionUrl.toString());

store = session.getStore(urln);

store.connect();

} catch (Exception e) {

// Close the Downloading dialog box.

downloadingDialog.dispose();

// Show error dialog box.

showError("Unable to connect.", true);

}

// Download message headers from server.

try {

// Open main "INBOX" folder.

Folder folder = store.getFolder("INBOX");

folder.open(Folder.READ_WRITE);

// Get folder's list of messages.

Message[] messages = folder.getMessages();

// Retrieve message headers for each message in folder.

FetchProfile profile = new FetchProfile();

profile.add(FetchProfile.Item.ENVELOPE);

folder.fetch(messages, profile);

// Put messages in table.

tableModel.setMessages(messages);

} catch (Exception e) {

// Close the Downloading dialog box.

downloadingDialog.dispose();

// Show error dialog box.

showError("Unable to download messages.", true);

}

// Close the Downloading dialog box.

downloadingDialog.dispose();

1 5 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

// Show error dialog box and exit afterward if necessary.

private void showError(String message, boolean exit) {

JOptionPane.showMessageDialog(this, message, "Error",

JOptionPane.ERROR_MESSAGE);

if (exit)

System.exit(0);

}

// Get a message's content.

public static String getMessageContent(Message message)

throws Exception {

Object content = message.getContent();

if (content instanceof Multipart) {

StringBuffer messageContent = new StringBuffer();

Multipart multipart = (Multipart) content;

for (int i = 0; i < multipart.getCount(); i++) {

Part part = (Part) multipart.getBodyPart(i);

if (part.isMimeType("text/plain")) {

messageContent.append(part.getContent().toString());

}

}

return messageContent.toString();

} else {

return content.toString();

}

}

// Run E-mail Client.

public static void main(String[] args) {

EmailClient client = new EmailClient();

client.show();

// Display Connect dialog box.

client.connect();

}

}

The EmailClient Variables
EmailClient begins by declaring several instance variables, most of which hold references

to the controls. The selectedMessage variable holds a reference to the Message object

represented by the selected row in the message table. The deleting instance variable is

a boolean flag that tracks whether or not a message is currently being deleted from the

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 5 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



messages table. Finally, the session variable contains a reference to the JavaMail session

established in the connect( ) method.

The EmailClient Constructor
When the EmailClient is instantiated, all the controls are initialized inside its constructor.

The constructor contains a lot of code, but most of it is straightforward. The following

discussion gives an overview.

First, the window’s title is set with a call to setTitle( ). Next, the setSize( ) call

establishes the window’s width and height in pixels. After that, a window listener is added

by calling addWindowListener( ), passing a WindowAdapter object that overrides the

windowClosing( ) event handler. This handler calls the actionExit( ) method when the

application’s window is closed. Next, a menu bar with a File menu is added to the application’s

window. Then the first buttons panel, which has the New Message button, is set up. An

ActionListener is added to the New Message button so that the actionNew( ) method is

called each time the button is clicked.

The messages table is constructed next. A ListSelectionListener is added to the table so

that each time a row is selected in the table the tableSelectionChanged( ) method is invoked.

The table’s selection mode is also updated to ListSelectionModel.SINGLE_SELECTION

so that only one row at a time can be selected in the table. Limiting row selection to only one

row simplifies the logic for determining which buttons should be enabled in the GUI when

a row (or message) is selected.

Next, the E-mails panel is created to house the messages table and the JTextArea in

which messages will be displayed when they are selected. After that, a titled border is added

to the panel. The message text area is set up next. Take note that the messageTextArea

.setEditable( ) method is called with a parameter of false. This disables the text in the text

area from being modified. Next, a JSplitPane is created to divide the E-mails panel between

the messages table and the message text area. The JSplitPane creates a divider between the

two components so that each section of the panel can be sized as desired. Initially, each

section of the JSplitPane is set to 50% in the show( ) method, effectively dividing the panel

in half.

Finally, the second buttons panel is created. This buttons panel has a Reply, a Forward,

and a Delete button. Each of the buttons adds an ActionListener that invokes the

corresponding action method when a button is clicked. After creating the second button

panel, all of the panels that have been created are added to the window.

The tableSelectionChanged( ) Method
The tableSelectionChanged( ) method, shown here, is called each time a row is selected in

the messages table:

// Called when table row selection changes.

private void tableSelectionChanged() {

/* If not in the middle of deleting a message, set

the selected message and display it. */

if (!deleting) {

selectedMessage =

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

1 5 4 T h e A r t O f J a v a

ApDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



tableModel.getMessage(table.getSelectedRow());

showSelectedMessage();

updateButtons();

}

}

This method starts by checking the deleting flag. If the deleting flag is not true, then,

first, the selectedMessage variable is updated with the Message corresponding to the row

selected. Second, the showSeletedMessage( ) method is called to display the message that

has just been selected. Finally, updateButtons( ) is called to update the state of the buttons.

The actionNew( ), actionForward( ), and actionReply( ) Methods
Each of the actionNew( ), actionForward( ), and actionReply( ) methods serves to invoke

the sendMessage( ) method when its respective button is clicked. The sendMessage( )

method is passed an identifier specifying the type of message being sent and the

selectedMessage if applicable.

The actionDelete( ) Method
As E-mail Client is currently written, it does not automatically remove messages from the

server. Instead, you must explicitly request that they be deleted. This is a safety feature

built into the program that allows you to experiment freely without worrying about losing

an important message. If you don’t explicitly delete a message, it will remain on the server

where it can be retrieved by another e-mail application.

The actionDelete( ) method shown in this section deletes an e-mail message from the

server. It works by flagging the selected message as being deleted and then instructing

the selected message’s folder to expunge any deleted messages it contains.

In general, messages can be removed from JavaMail folders by calling the expunge( )

method of the Folder object or by closing the folder with the expunge flag set to true.

JavaMail defines several message flags which are supported by the javax.mail.Flags class

and specified by its inner class, javax.mail.Flags.Flag. Of these flags, DELETED is the

one that marks a message as deleted.

Because JavaMail’s built-in POP3 code does not support the Folder object’s expunge( )

method, the actionDelete( ) method removes the deleted message by closing the folder with

the expunge flag set to true.

// Delete the selected message.

private void actionDelete() {

deleting = true;

try {

// Delete message from server.

selectedMessage.setFlag(Flags.Flag.DELETED, true);

Folder folder = selectedMessage.getFolder();

folder.close(true);

folder.open(Folder.READ_WRITE);

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 5 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



1 5 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

} catch (Exception e) {

showError("Unable to delete message.", false);

}

// Delete message from table.

tableModel.deleteMessage(table.getSelectedRow());

// Update GUI.

messageTextArea.setText("");

deleting = false;

selectedMessage = null;

updateButtons();

}

The actionDelete( ) method begins by setting the deleting flag to true. Setting the

deleting flag alerts the tableSelectionChanged( ) method to ignore table changes while a

message is being deleted. Next, the actual message deleting takes place in a few steps. First,

the selectedMessage is marked as having been deleted by a call to setFlag( ) with the

Flags.Flag.DELETED flag. Second, the selectedMessage’s folder is closed. When folders

are closed in JavaMail, any messages in the folder that have a DELETED flag are deleted.

Third, the closed folder is reopened so that any other messages it contains can be accessed again.

After the message is deleted from the server, it is removed from the messages table with

a call to tableModel.deleteMessage( ). Finally, actionDelete( ) updates the GUI by clearing

the message text area and updating the button states.

The sendMessage( ) Method
The sendMessage( ) method, shown here, performs the actual sending of a message. In

general, it works by displaying a Message dialog box and then using the data entered in the

Message dialog box to create a new Message object. The new Message object is then sent

with JavaMail’s Transport class.

// Send the specified message.

private void sendMessage(int type, Message message) {

// Display message dialog box to get message values.

MessageDialog dialog;

try {

dialog = new MessageDialog(this, type, message);

if (!dialog.display()) {

// Return if dialog box was cancelled.

return;

}

} catch (Exception e) {

showError("Unable to send message.", false);

return;

}

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



try {

// Create a new message with values from dialog box.

Message newMessage = new MimeMessage(session);

newMessage.setFrom(new InternetAddress(dialog.getFrom()));

newMessage.setRecipient(Message.RecipientType.TO,

new InternetAddress(dialog.getTo()));

newMessage.setSubject(dialog.getSubject());

newMessage.setSentDate(new Date());

newMessage.setText(dialog.getContent());

// Send new message.

Transport.send(newMessage);

} catch (Exception e) {

showError("Unable to send message.", false);

}

}

First, sendMessage( ) creates a MessageDialog forwarding it the message type and

message passed in as arguments. The MessageDialog then collects the message properties

such as the To address, the From address, and the Subject. After the message properties have

been collected, a new Message object is created and populated with the properties. The new

message’s From address is set with the Message object’s setFrom( ) method. Similarly, the

Message object’s setRecipient( ) method sets the new message’s To address. Take note

that the setRecipient( ) method also serves to set a message’s CC and BCC addresses by

specifying the recipient type as Message.RecipientType.CC or Message.RecipientType

.BCC, respectively. The Messsage object’s setSubject( ) method does just that—it sets the

message’s subject. The setSentDate( ) method specifies the timestamp placed on the message.

The setText( ) method specifies the message’s text content.

Finally, the message is sent with a call to Transport.send( ). JavaMail’s Transport class

encapsulates the protocol-specific code for sending the message, which typically is SMTP.

The showSelectedMessage( ) Method
The showSelectedMessage( ) method, shown here, loads and then displays the selectedMessage

in the message text area:

// Show the selected message in the content panel.

private void showSelectedMessage() {

// Show hour glass cursor while message is being loaded.

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

try {

messageTextArea.setText(

getMessageContent(selectedMessage));

messageTextArea.setCaretPosition(0);

} catch (Exception e) {

showError("Unable to load message.", false);

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 5 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



} finally {

// Return to default cursor.

setCursor(Cursor.getDefaultCursor());

}

}

Before the selectedMessage is loaded, the application’s cursor is set to the WAIT_CURSOR

to signify that the application is busy. On most operating systems, the WAIT_CURSOR is

an hour glass. After the cursor has been set, the selected message’s content is loaded with

a call to getMessageContent( ). Next, the content is displayed in the text area and the

setCaretPosition( ) method is called to reset the text area’s caret position to the beginning.

Setting the caret position at the beginning ensures that the text area is scrolled to the top.

Finally, the application cursor is set back to the default cursor.

The udpateButtons( ) Method
The updateButtons( ) method updates the state of all the buttons on the button panel based

on whether or not there is a message currently selected. The updateButtons( ) method is

shown here:

/* Update each button's state based on whether or not

there is a message currently selected in the table. */

private void updateButtons() {

if (selectedMessage != null) {

replyButton.setEnabled(true);

forwardButton.setEnabled(true);

deleteButton.setEnabled(true);

} else {

replyButton.setEnabled(false);

forwardButton.setEnabled(false);

deleteButton.setEnabled(false);

}

}

If no message is selected in the messages table, all of the buttons are disabled, giving them

a grayed-out appearance. However, if there is a selected message, each button is enabled for use.

The show( ) Method
The show( ) method overrides its parent method in the JFrame class so that the E-mails panel’s

split pane divider location can be updated. By default, JSplitPane uses the preferred sizes of

its components to determine where the divider should be located. Since the message table

doesn’t have any messages in it to start with, the message table’s preferred size is set just

high enough to show the column headers. To properly position the divider in the middle of

the panel, the show( ) method, shown here, makes a call to setDividerLocation( ):

// Show the application window on the screen.

public void show() {

1 5 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 5 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

super.show();

// Update the split panel to be divided 50/50.

splitPane.setDividerLocation(.5);

}

The connect( ) Method
Because of the connect( ) method’s size and importance, we will examine it closely, line by

line. The connect( ) method begins with these lines:

// Display Connect dialog box.

ConnectDialog dialog = new ConnectDialog(this);

dialog.show();

Before a connection can be made to an e-mail server, the connection settings have to be

entered into the application. A ConnectDialog is instantiated and displayed to capture the

connection settings.

Once the connection settings have been captured by the ConnectDialog, they are used to

create a JavaMail connection URL.

// Build connection URL from Connect dialog box settings.

StringBuffer connectionUrl = new StringBuffer();

connectionUrl.append(dialog.getType() + "://");

connectionUrl.append(dialog.getUsername() + ":");

connectionUrl.append(dialog.getPassword() + "@");

connectionUrl.append(dialog.getServer() + "/");

JavaMail connection URLs have the following scheme:

protocol://username:password@hostname

For example, to connect to a server named mailserver.com with a username of johndoe

and a password of pass1234 using the POP3 protocol, the URL would be:

pop3://johndoe:pass1234@mailserver.com

Next, a DownloadingDialog is instantiated and then run to display an informational

message on the screen while e-mail is being downloaded.

/* Display dialog box stating that messages are

currently being downloaded from server. */

final DownloadingDialog downloadingDialog =

new DownloadingDialog(this);

SwingUtilities.invokeLater(new Runnable() {

public void run() {

downloadingDialog.show();

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



1 6 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

}

});

When a modal dialog box, like DownloadingDialog, is displayed on the screen, the current

thread of execution is halted until the dialog box is terminated. This behavior is normally the

desired effect; however, it is not desirable for E-mail Client. In the case of E-mail Client,

the DownloadingDialog needs to be displayed while downloading is taking place, not prior

to downloading. To achieve this, the Downloading dialog box is run in a separate thread from

Swing’s main event execution thread with a call to SwingUtilities.invokeLater( ).

After launching the Downloading dialog box, the actual work of connecting to the e-mail

server takes place. First, a JavaMail session is initialized by the following sequence:

// Establish JavaMail session and connect to server.

Store store = null;

try {

// Initialize JavaMail session with SMTP server.

Properties props = new Properties();

props.put("mail.smtp.host", dialog.getSmtpServer());

session = Session.getDefaultInstance(props, null);

Notice that the JavaMail session is passed a set of properties that contains the SMTP server

address. JavaMail sessions store the configuration options and authentication information

used to interact with an e-mail server. Storing this information in the Session object allows

it to be reused throughout the application by JavaMail’s classes. In E-mail Client’s case, the

session data is used by the Transport class to send messages in the sendMessage( ) method.

After initializing the JavaMail session, the connection to the e-mail server is made in the

following code:

// Connect to mail server.

URLName urln = new URLName(connectionUrl.toString());

store = session.getStore(urln);

store.connect();

} catch (Exception e) {

// Close the Downloading dialog box.

downloadingDialog.dispose();

// Show error dialog box.

showError("Unable to connect.", true);

}

JavaMail uses Store objects to represent a message store and its access protocol for

storing and retrieving messages. A message store is analogous to an e-mail account; thus

Store objects essentially are an interface to accessing an e-mail account with a given protocol

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 6 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

such as POP3 or IMAP. In the preceding code, the actual network connection to the e-mail

server is established by retrieving a Store based on the protocol entered in the Connect dialog

box and then calling its connect( ) method.

First, a URLName object is instantiated with the connection URL constructed earlier using

data entered in the Connect dialog box. The URLName object is then passed to the session’s

getStore( ) method. The getStore( ) method returns a Store object based on the URLName

object’s protocol. After the store has been retrieved, its connect( ) method is invoked.

Remember that POP3 servers only support the notion of one folder, whereas IMAP servers

can have multiple folders. Thus, once the connection has been successfully established with

the e-mail server, the default “INBOX” folder is opened and its messages are retrieved as

shown in the following code:

// Download message headers from server.

try {

// Open main "INBOX" folder.

Folder folder = store.getFolder("INBOX");

folder.open(Folder.READ_WRITE);

// Get folder's list of messages.

Message[] messages = folder.getMessages();

When a list of messages is retrieved from a folder, as shown in the preceding listing, each

Message object is empty. The Folder object’s getMessages( ) method simply returns an

array of empty Message objects, each one representing a message in the folder. JavaMail

uses this technique to allow messages to be downloaded on demand, thus minimizing the

amount of data being downloaded from an e-mail server.

Since E-mail Client needs to have each message’s data available when displaying the list

of messages in the table, the following code retrieves the message headers ahead of time

instead of having them loaded on demand:

// Retrieve message headers for each message in folder.

FetchProfile profile = new FetchProfile();

profile.add(FetchProfile.Item.ENVELOPE);

folder.fetch(messages, profile);

// Put messages in table.

tableModel.setMessages(messages);

} catch (Exception e) {

// Close the Downloading dialog box.

downloadingDialog.dispose();

// Show error dialog box.

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



1 6 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

showError("Unable to download messages.", true);

}

In order to load the messages ahead of time, a FetchProfile object is created. Fetch

profiles are used to specify the portions of a message that should be loaded or “fetched” ahead

of time. The FetchProfile created in the preceding code fetches the “envelope” portion of

messages. Message envelopes are an aggregation of the most common message headers, such

as the sender, recipient, and subject.

After retrieving the message fields ahead of time with a FetchProfile, the messages are

added to the messages table with a call to tableModel.setMessages( ). The messages table

is then updated, listing each of the messages downloaded from the server.

The connect( ) method wraps up by closing the modal DownloadingDialog, as shown

here. The user is now free to interact with the application again.

// Close the Downloading dialog box.

downloadingDialog.dispose();

The showError( ) Method
The showError( ) method, shown here, displays an error dialog box on the screen with the

given message. Observe also that the showError( ) method takes an exit flag to specify

whether or not the application should exit after displaying the error message.

// Show error dialog box and exit afterward if necessary.

private void showError(String message, boolean exit) {

JOptionPane.showMessageDialog(this, message, "Error",

JOptionPane.ERROR_MESSAGE);

if (exit)

System.exit(0);

}

The getMessageContent( ) Method
The getMessageContent( ) method, shown here, retrieves a message’s content. Notice that

this method is declared public and static so that it can be accessed from other classes without

requiring a reference to the EmailClient class:

// Get a message's content.

public static String getMessageContent(Message message)

throws Exception {

Object content = message.getContent();

if (content instanceof Multipart) {

StringBuffer messageContent = new StringBuffer();

Multipart multipart = (Multipart) content;

for (int i = 0; i < multipart.getCount(); i++) {

Part part = (Part) multipart.getBodyPart(i);

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 6 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

if (part.isMimeType("text/plain")) {

messageContent.append(part.getContent().toString());

}

}

return messageContent.toString();

} else {

return content.toString();

}

}

Most e-mail messages contain only plaintext, but there are many messages that contain

other information. For instance, some messages contain HTML or file attachments. When

a message contains HTML, typically it also contains a plaintext version of the HTML. In

this case, both the HTML and plaintext pieces of the message are distinguished as separate

“parts.” Messages with more than one piece, or “part,” are called multipartmessages. Messages

with file attachments work much the same way as messages containing HTML; the file

attachment is contained in its own part.

Because E-mail Client handles only text-based messages, the getMessageContent( )

method begins by checking the given message’s content to see whether or not it is multipart.

If the content is multipart, then message.getContent( ) will return a Multipart object.

JavaMail’s Multipart object is similar to a standard Java collection; it encapsulates a list of

parts for a multipart message.

If message.getContent( ) returns a Multipart object, each of its parts are iterated over

in an effort to find and extract the plaintext parts of the message content. Conversely, if the

content object returned from message.getContent( ) is not Multipart, then the returned

object’s toString( ) method is called to simply return its text.

Compiling and Running the E-mail Client
As mentioned earlier, you will need to have the JavaMail and the JavaBeans Activation

Framework libraries installed on your computer before you can compile or run the E-mail

Client code. Once the libraries have been installed, they must be added to your Java

classpath. You could do this by updating your CLASSPATH environmental variable.

Alternatively, you can just specify the path when you compile and run E-mail Client. For

example, if the top-level directory for JavaMail is javamail-1.3 and the top-level directory

for JavaBeans Activation Framework is jaf-1.0.2, then the following command line will

compile E-mail Client:

javac -classpath .;c:\javamail-1.3\mail.jar;c:\jaf-1.0.2\activation.jar

EmailClient.java MessagesTableModel.java ConnectDialog.java

DownloadingDialog.java MessageDialog.java

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The mail.jar and the activation.jar files contain the classes used by JavaMail and JavaBeans

Activation Framework.

To run EmailClient, use the following command line:

javaw -cp .;c:\javamail-1.3\mail.jar;c:\jaf-1.0.2\activation.jar EmailClient

Notice that you must specify the paths to the mail.jar and activation.jar files explicitly. Of

course, if you update CLASSPATH, this explicit specification is not needed.

Once E-mail Client has been started, its use is straightforward. First, the Connect dialog

box will appear on the screen prompting for connection settings. Enter the settings and then

click the Connect button. After the connection with the server is established, the e-mail

messages will be downloaded and displayed in the table. To view a message, simply select

it from the table, and it will be displayed in the area below the table. Once a message is

selected, it can be replied to, forwarded, or deleted by clicking the buttons at the bottom of

the application. Remember two points: First, only text messages are fully supported. Second,

no message is deleted on the server unless you explicitly request it. Figure 5-5 shows E-mail

Client in action.

1 6 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

Figure 5-5 E-mail Client in action

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Expanding Beyond the Basic E-mail Client
The code in this chapter provides an excellent experimental platform for e-mail application

development. It is also a good starting point for creating your own custom e-mail application.

Here are some enhancements that you might want to try adding to E-mail Client:

� Add support for saving connection settings so that they don’t have to be entered

each time.

� Add the ability to check for and download new e-mail from the server.

� Add the ability to save e-mail attachments.

� Add the ability to render HTML messages.

� Add an address book.

Conversely, you might want to try removing functionality, too. For example, you might

want to try integrating into another application only that part of the code that sends a

message. Doing so would allow that application to send an e-mail message automatically

when some event has occurred. The ability to take complete programmatic control over

e-mail opens the door to many exciting possibilities.

C h a p t e r 5 : I m p l e m e n t i n g a n E - m a i l C l i e n t i n J a v a 1 6 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 5

P:\010Comp\ApDev\971-3\ch05.vp
Monday, July 07, 2003 10:03:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



This page intentionally left blank 



CHAPTER

6
Crawling the Web

with Java
By James Holmes

167

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 5:19:20 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



1 6 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

Have you ever wondered how Internet search engines like Google and Yahoo! can

search the Internet on virtually any topic and return a list of results so quickly?

Obviously it would be impossible to scour the Internet each time a search request

was initiated. Instead search engines query highly optimized databases of Web pages that

have been aggregated and indexed ahead of time. Compiling these databases ahead of time

allows search engines to scan billions of Web pages for something as esoteric as “astrophysics”

or as common as “weather” and return the results almost instantly.

The real mystery of search engines does not lie in their databases of Web pages, but rather

in how the databases are created. Search engines use software known as Web crawlers to

traverse the Internet and to save each of the individual pages passed by along the way. Search

engines then use additional software to index each of the saved pages, creating a database

containing all the words in the pages.

Web crawlers are an essential component to search engines; however, their use is not limited

to just creating databases of Web pages. In fact, Web crawlers have many practical uses. For

example, you might use a crawler to look for broken links in a commercial Web site. You

might also use a crawler to find changes to a Web site. To do so, first, crawl the site, creating

a record of the links contained in the site. At a later date, crawl the site again and then compare

the two sets of links, looking for changes. A crawler could also be used to archive the contents

of a site. Frankly, crawler technology is useful in many types of Web-related applications.

Although Web crawlers are conceptually easy in that you just follow the links from one

site to another, they are a bit challenging to create. One complication is that a list of links to

be crawled must be maintained, and this list grows and shrinks as sites are searched. Another

complication is the complexity of handling absolute versus relative links. Fortunately, Java

contains features that help make it easier to implement a Web crawler. First, Java’s support

for networking makes downloading Web pages simple. Second, Java’s support for regular

expression processing simplifies the finding of links. Third, Java’s Collection Framework

supplies the mechanisms needed to store a list of links.

The Web crawler developed in this chapter is called Search Crawler. It crawls the Web,

looking for sites that contain strings matching those specified by the user. It displays the

URLs of the sites in which matches are found. Although Search Crawler is a useful utility as

is, its greatest benefit is found when it is used as a starting point for your own crawler-based

applications.

Fundamentals of a Web Crawler
Despite the numerous applications for Web crawlers, at the core they are all fundamentally

the same. Following is the process by which Web crawlers work:

1. Download the Web page.

2. Parse through the downloaded page and retrieve all the links.

3. For each link retrieved, repeat the process.

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:07 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 6 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

Now let’s look at each step of the process in more detail.

In the first step, a Web crawler takes a URL and downloads the page from the Internet at

the given URL. Oftentimes the downloaded page is saved to a file on disk or put in a database.

Saving the page allows the crawler or other software to go back later and manipulate the page,

be it for indexing words (as in the case with a search engine) or for archiving the page for use

by an automated archiver.

In the second step, a Web crawler parses through the downloaded page and retrieves the

links to other pages. Each link in the page is defined with an HTML anchor tag similar to

the one shown here:

<A HREF="http://www.host.com/directory/file.html">Link</A>

After the crawler has retrieved the links from the page, each link is added to a list of links

to be crawled.

The third step of Web crawling repeats the process. All crawlers work in a recursive or loop

fashion, but there are two different ways to handle it. Links can be crawled in a depth-first or

breadth-first manner. Depth-first crawling follows each possible path to its conclusion before

another path is tried. It works by finding the first link on the first page. It then crawls the page

associated with that link, finding the first link on the new page, and so on, until the end of

the path has been reached. The process continues until all the branches of all the links have

been exhausted.

Breadth-first crawling checks each link on a page before proceeding to the next page.

Thus, it crawls each link on the first page and then crawls each link on the first page’s first

link, and so on, until each level of links has been exhausted. Choosing whether to use depth-

or breadth-first crawling often depends on the crawling application and its needs. Search

Crawler uses breadth-first crawling, but you can change this behavior if you like.

Although Web crawling seems quite simple at first glance, there’s actually a lot that goes

into creating a full-fledged Web crawling application. For example, Web crawlers need to

adhere to the “Robot protocol,” as explained in the following section. Web crawlers also have

to handle many “exception” scenarios such as Web server errors, redirects, and so on.

Adhering to the Robot Protocol
As you can imagine, crawling a Web site can put an enormous strain on a Web server’s resources

as a myriad of requests are made back to back. Typically, a few pages are downloaded at

a time from a Web site, not hundreds or thousands in succession. Web sites also often have

restricted areas that crawlers should not crawl. To address these concerns, many Web sites

adopted the Robot protocol, which establishes guidelines that crawlers should follow. Over

time, the protocol has become the unwritten law of the Internet for Web crawlers.

The Robot protocol specifies that Web sites wishing to restrict certain areas or pages from

crawling have a file called robots.txt placed at the root of the Web site. Ethical crawlers will

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:07 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



1 7 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

reference the robot file and determine which parts of the site are disallowed for crawling.

The disallowed areas will then be skipped by the ethical crawlers. Following is an example

robots.txt file and an explanation of its format:

# robots.txt for http://somehost.com/

User-agent: *

Disallow: /cgi-bin/

Disallow: /registration  # Disallow robots on registration page

Disallow: /login

The first line of the sample file has a comment on it, as denoted by the use of a hash (#)

character. Comments can be on lines unto themselves or on statement lines, as shown on

the fifth line of the preceding sample file. Crawlers reading robots.txt files should ignore

any comments.

The third line of the sample file specifies the User-agent to which the Disallow rules

following it apply. User-agent is a term used for the programs that access a Web site. For

example, when accessing a Web site with Microsoft’s Internet Explorer, the User-agent is

“Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)” or something similar to it. Each

browser has a unique User-agent value that it sends along with each request to a Web server.

Web crawlers also typically send a User-agent value along with each request to a Web

server. The use of User-agents in the robots.txt file allows Web sites to set rules on a User-

agent–by–User-agent basis. However, typically Web sites want to disallow all robots (or

User-agents) access to certain areas, so they use a value of asterisk (*) for the User-agent.

This specifies that all User-agents are disallowed for the rules that follow it. You might be

thinking that the use of an asterisk to disallow all User-agents from accessing a site would

prevent standard browser software from working with certain sections of Web sites. This

is not a problem, though, because browsers do not observe the Robot protocol and are not

expected to.

The lines following the User-agent line are called disallow statements. The disallow

statements define the Web site paths that crawlers are not allowed to access. For example,

the first disallow statement in the sample file tells crawlers not to crawl any links that begin

with “/cgi-bin/”. Thus, the URLs

http://somehost.com/cgi-bin/

http://somehost.com/cgi-bin/register

are both off limits to crawlers according to that line. Disallow statements are for paths and

not specific files; thus any link being requested that contains a path on the disallow list is

off limits.

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:07 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



An Overview of the Search Crawler
Search Crawler is a basic Web crawler for searching the Web, and it illustrates the fundamental

structure of crawler-based applications. With Search Crawler, you can enter search criteria

and then search the Web in real time, URL by URL, looking for matches to the criteria.

Search Crawler’s interface, as shown in Figure 6-1, has three prominent sections, which

we will refer to as Search, Stats, and Matches. The Search section at the top of the window

has controls for entering search criteria, including the start URL for the search, the maximum

number of URLs to crawl, and the search string. The search criteria can be additionally

tweaked by choosing to limit the search to the site of the beginning URL and by selecting

the Case Sensitive check box for the search string.

The Stats section, located in the middle of the window, has controls showing the current

status of crawling when searching is underway. This section also has a progress bar to indicate

the progress toward completing the search.

The Matches section at the bottom of the window has a table listing all the matches found

by a search. These are the URLs of the Web pages that contain the search string.

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 7 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

Figure 6-1 The Search Crawler GUI interface

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



1 7 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

The SearchCrawler Class
SearchCrawler has a main( ) method, so on execution it will be invoked first. The main( )

method instantiates a new SearchCrawler object and then calls its show( ) method, which

causes it to be displayed.

The SearchCrawler class is shown here and is examined in detail in the following

sections. Notice that it extends JFrame:

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.net.*;

import java.util.*;

import java.util.regex.*;

import javax.swing.*;

import javax.swing.table.*;

// The Search Web Crawler

public class SearchCrawler extends JFrame

{

// Max URLs drop-down values.

private static final String[] MAX_URLS =

{"50", "100", "500", "1000"};

// Cache of robot disallow lists.

private HashMap disallowListCache = new HashMap();

// Search GUI controls.

private JTextField startTextField;

private JComboBox maxComboBox;

private JCheckBox limitCheckBox;

private JTextField logTextField;

private JTextField searchTextField;

private JCheckBox caseCheckBox;

private JButton searchButton;

// Search stats GUI controls.

private JLabel crawlingLabel2;

private JLabel crawledLabel2;

private JLabel toCrawlLabel2;

private JProgressBar progressBar;

private JLabel matchesLabel2;

// Table listing search matches.

private JTable table;

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Flag for whether or not crawling is underway.

private boolean crawling;

// Matches log file print writer.

private PrintWriter logFileWriter;

// Constructor for Search Web Crawler.

public SearchCrawler()

{

// Set application title.

setTitle("Search Crawler");

// Set window size.

setSize(600, 600);

// Handle window closing events.

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

actionExit();

}

});

// Set up File menu.

JMenuBar menuBar = new JMenuBar();

JMenu fileMenu = new JMenu("File");

fileMenu.setMnemonic(KeyEvent.VK_F);

JMenuItem fileExitMenuItem = new JMenuItem("Exit",

KeyEvent.VK_X);

fileExitMenuItem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionExit();

}

});

fileMenu.add(fileExitMenuItem);

menuBar.add(fileMenu);

setJMenuBar(menuBar);

// Set up search panel.

JPanel searchPanel = new JPanel();

GridBagConstraints constraints;

GridBagLayout layout = new GridBagLayout();

searchPanel.setLayout(layout);

JLabel startLabel = new JLabel("Start URL:");

constraints = new GridBagConstraints();

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 7 3

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(startLabel, constraints);

searchPanel.add(startLabel);

startTextField = new JTextField();

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

layout.setConstraints(startTextField, constraints);

searchPanel.add(startTextField);

JLabel maxLabel = new JLabel("Max URLs to Crawl:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(maxLabel, constraints);

searchPanel.add(maxLabel);

maxComboBox = new JComboBox(MAX_URLS);

maxComboBox.setEditable(true);

constraints = new GridBagConstraints();

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(maxComboBox, constraints);

searchPanel.add(maxComboBox);

limitCheckBox =

new JCheckBox("Limit crawling to Start URL site");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.WEST;

constraints.insets = new Insets(0, 10, 0, 0);

layout.setConstraints(limitCheckBox, constraints);

searchPanel.add(limitCheckBox);

JLabel blankLabel = new JLabel();

constraints = new GridBagConstraints();

constraints.gridwidth = GridBagConstraints.REMAINDER;

layout.setConstraints(blankLabel, constraints);

searchPanel.add(blankLabel);

JLabel logLabel = new JLabel("Matches Log File:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

1 7 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



layout.setConstraints(logLabel, constraints);

searchPanel.add(logLabel);

String file =

System.getProperty("user.dir") +

System.getProperty("file.separator") +

"crawler.log";

logTextField = new JTextField(file);

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

layout.setConstraints(logTextField, constraints);

searchPanel.add(logTextField);

JLabel searchLabel = new JLabel("Search String:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(searchLabel, constraints);

searchPanel.add(searchLabel);

searchTextField = new JTextField();

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.insets = new Insets(5, 5, 0, 0);

constraints.gridwidth= 2;

constraints.weightx = 1.0d;

layout.setConstraints(searchTextField, constraints);

searchPanel.add(searchTextField);

caseCheckBox = new JCheckBox("Case Sensitive");

constraints = new GridBagConstraints();

constraints.insets = new Insets(5, 5, 0, 5);

constraints.gridwidth = GridBagConstraints.REMAINDER;

layout.setConstraints(caseCheckBox, constraints);

searchPanel.add(caseCheckBox);

searchButton = new JButton("Search");

searchButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionSearch();

}

});

constraints = new GridBagConstraints();

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 7 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



1 7 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 5, 5);

layout.setConstraints(searchButton, constraints);

searchPanel.add(searchButton);

JSeparator separator = new JSeparator();

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 5, 5);

layout.setConstraints(separator, constraints);

searchPanel.add(separator);

JLabel crawlingLabel1 = new JLabel("Crawling:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(crawlingLabel1, constraints);

searchPanel.add(crawlingLabel1);

crawlingLabel2 = new JLabel();

crawlingLabel2.setFont(

crawlingLabel2.getFont().deriveFont(Font.PLAIN));

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

layout.setConstraints(crawlingLabel2, constraints);

searchPanel.add(crawlingLabel2);

JLabel crawledLabel1 = new JLabel("Crawled URLs:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(crawledLabel1, constraints);

searchPanel.add(crawledLabel1);

crawledLabel2 = new JLabel();

crawledLabel2.setFont(

crawledLabel2.getFont().deriveFont(Font.PLAIN));

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 7 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

layout.setConstraints(crawledLabel2, constraints);

searchPanel.add(crawledLabel2);

JLabel toCrawlLabel1 = new JLabel("URLs to Crawl:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(toCrawlLabel1, constraints);

searchPanel.add(toCrawlLabel1);

toCrawlLabel2 = new JLabel();

toCrawlLabel2.setFont(

toCrawlLabel2.getFont().deriveFont(Font.PLAIN));

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

layout.setConstraints(toCrawlLabel2, constraints);

searchPanel.add(toCrawlLabel2);

JLabel progressLabel = new JLabel("Crawling Progress:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(progressLabel, constraints);

searchPanel.add(progressLabel);

progressBar = new JProgressBar();

progressBar.setMinimum(0);

progressBar.setStringPainted(true);

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

layout.setConstraints(progressBar, constraints);

searchPanel.add(progressBar);

JLabel matchesLabel1 = new JLabel("Search Matches:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 10, 0);

layout.setConstraints(matchesLabel1, constraints);

searchPanel.add(matchesLabel1);

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



matchesLabel2 = new JLabel();

matchesLabel2.setFont(

matchesLabel2.getFont().deriveFont(Font.PLAIN));

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 10, 5);

layout.setConstraints(matchesLabel2, constraints);

searchPanel.add(matchesLabel2);

// Set up matches table.

table =

new JTable(new DefaultTableModel(new Object[][]{},

new String[]{"URL"}) {

public boolean isCellEditable(int row, int column)

{

return false;

}

});

// Set up Matches panel.

JPanel matchesPanel = new JPanel();

matchesPanel.setBorder(

BorderFactory.createTitledBorder("Matches"));

matchesPanel.setLayout(new BorderLayout());

matchesPanel.add(new JScrollPane(table),

BorderLayout.CENTER);

// Add panels to display.

getContentPane().setLayout(new BorderLayout());

getContentPane().add(searchPanel, BorderLayout.NORTH);

getContentPane().add(matchesPanel, BorderLayout.CENTER);

}

// Exit this program.

private void actionExit() {

System.exit(0);

}

// Handle Search/Stop button being clicked.

private void actionSearch() {

// If stop button clicked, turn crawling flag off.

if (crawling) {

crawling = false;

return;

1 7 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

ArrayList errorList = new ArrayList();

// Validate that start URL has been entered.

String startUrl = startTextField.getText().trim();

if (startUrl.length() < 1) {

errorList.add("Missing Start URL.");

}

// Verify start URL.

else if (verifyUrl(startUrl) == null) {

errorList.add("Invalid Start URL.");

}

// Validate that Max URLs is either empty or is a number.

int maxUrls = 0;

String max = ((String) maxComboBox.getSelectedItem()).trim();

if (max.length() > 0) {

try {

maxUrls = Integer.parseInt(max);

} catch (NumberFormatException e) {

}

if (maxUrls < 1) {

errorList.add("Invalid Max URLs value.");

}

}

// Validate that matches log file has been entered.

String logFile = logTextField.getText().trim();

if (logFile.length() < 1) {

errorList.add("Missing Matches Log File.");

}

// Validate that search string has been entered.

String searchString = searchTextField.getText().trim();

if (searchString.length() < 1) {

errorList.add("Missing Search String.");

}

// Show errors, if any, and return.

if (errorList.size() > 0) {

StringBuffer message = new StringBuffer();

// Concatenate errors into single message.

for (int i = 0; i < errorList.size(); i++) {

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 7 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



message.append(errorList.get(i));

if (i + 1 < errorList.size()) {

message.append("\n");

}

}

showError(message.toString());

return;

}

// Remove "www" from start URL if present.

startUrl = removeWwwFromUrl(startUrl);

// Start the Search Crawler.

search(logFile, startUrl, maxUrls, searchString);

}

private void search(final String logFile, final String startUrl,

final int maxUrls, final String searchString)

{

// Start the search in a new thread.

Thread thread = new Thread(new Runnable() {

public void run() {

// Show hour glass cursor while crawling is under way.

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

// Disable search controls.

startTextField.setEnabled(false);

maxComboBox.setEnabled(false);

limitCheckBox.setEnabled(false);

logTextField.setEnabled(false);

searchTextField.setEnabled(false);

caseCheckBox.setEnabled(false);

// Switch Search button to "Stop."

searchButton.setText("Stop");

// Reset stats.

table.setModel(new DefaultTableModel(new Object[][]{},

new String[]{"URL"}) {

public boolean isCellEditable(int row, int column)

{

return false;

}

});

1 8 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



updateStats(startUrl, 0, 0, maxUrls);

// Open matches log file.

try {

logFileWriter = new PrintWriter(new FileWriter(logFile));

} catch (Exception e) {

showError("Unable to open matches log file.");

return;

}

// Turn crawling flag on.

crawling = true;

// Perform the actual crawling.

crawl(startUrl, maxUrls, limitCheckBox.isSelected(),

searchString, caseCheckBox.isSelected());

// Turn crawling flag off.

crawling = false;

// Close matches log file.

try {

logFileWriter.close();

} catch (Exception e) {

showError("Unable to close matches log file.");

}

// Mark search as done.

crawlingLabel2.setText("Done");

// Enable search controls.

startTextField.setEnabled(true);

maxComboBox.setEnabled(true);

limitCheckBox.setEnabled(true);

logTextField.setEnabled(true);

searchTextField.setEnabled(true);

caseCheckBox.setEnabled(true);

// Switch search button back to "Search."

searchButton.setText("Search");

// Return to default cursor.

setCursor(Cursor.getDefaultCursor());

// Show message if search string not found.

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 8 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



if (table.getRowCount() == 0) {

JOptionPane.showMessageDialog(SearchCrawler.this,

"Your Search String was not found. Please try another.",

"Search String Not Found",

JOptionPane.WARNING_MESSAGE);

}

}

});

thread.start();

}

// Show dialog box with error message.

private void showError(String message) {

JOptionPane.showMessageDialog(this, message, "Error",

JOptionPane.ERROR_MESSAGE);

}

// Update crawling stats.

private void updateStats(

String crawling, int crawled, int toCrawl, int maxUrls)

{

crawlingLabel2.setText(crawling);

crawledLabel2.setText("" + crawled);

toCrawlLabel2.setText("" + toCrawl);

// Update progress bar.

if (maxUrls == -1) {

progressBar.setMaximum(crawled + toCrawl);

} else {

progressBar.setMaximum(maxUrls);

}

progressBar.setValue(crawled);

matchesLabel2.setText("" + table.getRowCount());

}

// Add match to matches table and log file.

private void addMatch(String url) {

// Add URL to matches table.

DefaultTableModel model =

(DefaultTableModel) table.getModel();

model.addRow(new Object[]{url});

// Add URL to matches log file.

try {

1 8 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



logFileWriter.println(url);

} catch (Exception e) {

showError("Unable to log match.");

}

}

// Verify URL format.

private URL verifyUrl(String url) {

// Only allow HTTP URLs.

if (!url.toLowerCase().startsWith("http://"))

return null;

// Verify format of URL.

URL verifiedUrl = null;

try {

verifiedUrl = new URL(url);

} catch (Exception e) {

return null;

}

return verifiedUrl;

}

// Check if robot is allowed to access the given URL.

private boolean isRobotAllowed(URL urlToCheck) {

String host = urlToCheck.getHost().toLowerCase();

// Retrieve host's disallow list from cache.

ArrayList disallowList =

(ArrayList) disallowListCache.get(host);

// If list is not in the cache, download and cache it.

if (disallowList == null) {

disallowList = new ArrayList();

try {

URL robotsFileUrl =

new URL("http://" + host + "/robots.txt");

// Open connection to robot file URL for reading.

BufferedReader reader =

new BufferedReader(new InputStreamReader(

robotsFileUrl.openStream()));

// Read robot file, creating list of disallowed paths.

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 8 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



String line;

while ((line = reader.readLine()) != null) {

if (line.indexOf("Disallow:") == 0) {

String disallowPath =

line.substring("Disallow:".length());

// Check disallow path for comments and remove if present.

int commentIndex = disallowPath.indexOf("#");

if (commentIndex != - 1) {

disallowPath =

disallowPath.substring(0, commentIndex);

}

// Remove leading or trailing spaces from disallow path.

disallowPath = disallowPath.trim();

// Add disallow path to list.

disallowList.add(disallowPath);

}

}

// Add new disallow list to cache.

disallowListCache.put(host, disallowList);

}

catch (Exception e) {

/* Assume robot is allowed since an exception

is thrown if the robot file doesn't exist. */

return true;

}

}

/* Loop through disallow list to see if

crawling is allowed for the given URL. */

String file = urlToCheck.getFile();

for (int i = 0; i < disallowList.size(); i++) {

String disallow = (String) disallowList.get(i);

if (file.startsWith(disallow)) {

return false;

}

}

return true;

}

// Download page at given URL.

1 8 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



private String downloadPage(URL pageUrl) {

try {

// Open connection to URL for reading.

BufferedReader reader =

new BufferedReader(new InputStreamReader(

pageUrl.openStream()));

// Read page into buffer.

String line;

StringBuffer pageBuffer = new StringBuffer();

while ((line = reader.readLine()) != null) {

pageBuffer.append(line);

}

return pageBuffer.toString();

} catch (Exception e) {

}

return null;

}

// Remove leading "www" from a URL's host if present.

private String removeWwwFromUrl(String url) {

int index = url.indexOf("://www.");

if (index != -1) {

return url.substring(0, index + 3) +

url.substring(index + 7);

}

return (url);

}

// Parse through page contents and retrieve links.

private ArrayList retrieveLinks(

URL pageUrl, String pageContents, HashSet crawledList,

boolean limitHost)

{

// Compile link matching pattern.

Pattern p =

Pattern.compile("<a\\s+href\\s*=\\s*\"?(.*?)[\"|>]",

Pattern.CASE_INSENSITIVE);

Matcher m = p.matcher(pageContents);

// Create list of link matches.

ArrayList linkList = new ArrayList();

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 8 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



while (m.find()) {

String link = m.group(1).trim();

// Skip empty links.

if (link.length() < 1) {

continue;

}

// Skip links that are just page anchors.

if (link.charAt(0) == '#') {

continue;

}

// Skip mailto links.

if (link.indexOf("mailto:") != -1) {

continue;

}

// Skip JavaScript links.

if (link.toLowerCase().indexOf("javascript") != -1) {

continue;

}

// Prefix absolute and relative URLs if necessary.

if (link.indexOf("://") == -1) {

// Handle absolute URLs.

if (link.charAt(0) == '/') {

link = "http://" + pageUrl.getHost() + link;

// Handle relative URLs.

} else {

String file = pageUrl.getFile();

if (file.indexOf('/') == -1) {

link = "http://" + pageUrl.getHost() + "/" + link;

} else {

String path =

file.substring(0, file.lastIndexOf('/') + 1);

link = "http://" + pageUrl.getHost() + path + link;

}

}

}

// Remove anchors from link.

int index = link.indexOf('#');

if (index != -1) {

link = link.substring(0, index);

1 8 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 8 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

}

// Remove leading "www" from URL's host if present.

link = removeWwwFromUrl(link);

// Verify link and skip if invalid.

URL verifiedLink = verifyUrl(link);

if (verifiedLink == null) {

continue;

}

/* If specified, limit links to those

having the same host as the start URL. */

if (limitHost &&

!pageUrl.getHost().toLowerCase().equals(

verifiedLink.getHost().toLowerCase()))

{

continue;

}

// Skip link if it has already been crawled.

if (crawledList.contains(link)) {

continue;

}

// Add link to list.

linkList.add(link);

}

return (linkList);

}

/* Determine whether or not search string is

matched in the given page contents. */

private boolean searchStringMatches(

String pageContents, String searchString,

boolean caseSensitive)

{

String searchContents = pageContents;

/* If case-sensitive search, lowercase

page contents for comparison. */

if (!caseSensitive) {

searchContents = pageContents.toLowerCase();

}

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Split search string into individual terms.

Pattern p = Pattern.compile("[\\s]+");

String[] terms = p.split(searchString);

// Check to see if each term matches.

for (int i = 0; i < terms.length; i++) {

if (caseSensitive) {

if (searchContents.indexOf(terms[i]) == -1) {

return false;

}

} else {

if (searchContents.indexOf(terms[i].toLowerCase()) == -1) {

return false;

}

}

}

return true;

}

// Perform the actual crawling, searching for the search string.

public void crawl(

String startUrl, int maxUrls, boolean limitHost,

String searchString, boolean caseSensitive)

{

// Set up crawl lists.

HashSet crawledList = new HashSet();

LinkedHashSet toCrawlList = new LinkedHashSet();

// Add start URL to the to crawl list.

toCrawlList.add(startUrl);

/* Perform actual crawling by looping

through the To Crawl list. */

while (crawling && toCrawlList.size() > 0)

{

/* Check to see if the max URL count has

been reached, if it was specified.*/

if (maxUrls != -1) {

if (crawledList.size() == maxUrls) {

break;

}

}

// Get URL at bottom of the list.

1 8 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



String url = (String) toCrawlList.iterator().next();

// Remove URL from the To Crawl list.

toCrawlList.remove(url);

// Convert string url to URL object.

URL verifiedUrl = verifyUrl(url);

// Skip URL if robots are not allowed to access it.

if (!isRobotAllowed(verifiedUrl)) {

continue;

}

// Update crawling stats.

updateStats(url, crawledList.size(), toCrawlList.size(),

maxUrls);

// Add page to the crawled list.

crawledList.add(url);

// Download the page at the given URL.

String pageContents = downloadPage(verifiedUrl);

/* If the page was downloaded successfully, retrieve all its

links and then see if it contains the search string. */

if (pageContents != null && pageContents.length() > 0)

{

// Retrieve list of valid links from page.

ArrayList links =

retrieveLinks(verifiedUrl, pageContents, crawledList,

limitHost);

// Add links to the To Crawl list.

toCrawlList.addAll(links);

/* Check if search string is present in

page, and if so, record a match. */

if (searchStringMatches(pageContents, searchString,

caseSensitive))

{

addMatch(url);

}

}

// Update crawling stats.

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 8 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

updateStats(url, crawledList.size(), toCrawlList.size(),

maxUrls);

}

}

// Run the Search Crawler.

public static void main(String[] args) {

SearchCrawler crawler = new SearchCrawler();

crawler.show();

}

}

The SearchCrawler Variables
SearchCrawler starts off by declaring several instance variables, most of which hold references

to the interface controls. First, the MAX_URLS String array declares the list of values to

be displayed in the Max URLs to Crawl combo box. Second, disallowListCache is defined

for caching robot disallow lists so that they don’t have to be retrieved for each URL being

crawled. Next, each of the interface controls is declared for the Search, Stats, and Matches

sections of the interface. After the interface controls have been declared, the crawling flag

is defined for tracking whether or not crawling is underway. Finally, the logFileWriter

instance variable, which is used for printing search matches to a log file, is declared.

The SearchCrawler Constructor
When the SearchCrawler is instantiated, all the interface controls are initialized inside its

constructor. The constructor contains a lot of code, but most of it is straightforward. The

following discussion gives an overview.

First, the application’s window title is set with a call to setTitle( ). Next, the setSize( )

call establishes the window’s width and height in pixels. After that, a window listener is

added by calling addWindowListener( ), which passes a WindowAdapter object that

overrides the windowClosing( ) event handler. This handler calls the actionExit( ) method

when the application’s window is closed. Next, a menu bar with a File menu is added to the

application’s window.

The next several lines of the constructor initiate and lay out the interface controls. Similar

to other applications in this book, the layout is arranged using the GridBagLayout class

and its associated GridBagConstraints class. First, the Search section of the interface is laid

out, followed by the Stats section. The Search section includes all the controls for entering

the search criteria and constraints. The Stats section holds all the controls for displaying the

current crawling status, such as how many URLs have been crawled and how many URLs

are left to crawl.

It’s important to point out three things in the Search and Stats sections. First, the Matches

Log File text field control is initialized with a string containing a filename. This string is set

1 9 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6ApDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



to a file called crawler.log in the directory the application is run from, as specified by the

Java environment variable user.dir. Second, an ActionListener is added to the Search

button so that the actionSearch( ) method is called each time the button is clicked. Third,

the font for each label that is used to display results is updated with a call to setFont( ). The

setFont( ) call is used to turn off the bolding of the label fonts so that they are distinguished

in the interface.

Following the Search and Stats sections of the interface is the Matches section that consists

of the matches table, which contains the URLs containing the search string. The matches table

is instantiated with a new DefaultTableModel subclass passed to its constructor. Typically a

fully qualified subclass of DefaultTableModel is used to customize the data model used by

a JTable; however, in this case only the isCellEditable( ) method needs to be implemented.

The isCellEditable( ) method instructs the table that no cells should be editable by returning

false, regardless of the row and column specified.

Once the matches table is initialized, it is added to the Matches panel. Finally, the Search

panel and Matches panel are added to the interface.

The actionSearch( ) Method
The actionSearch( ) method is invoked each time the Search (or Stop) button is clicked. The

actionSearch( ) method starts with these lines of code:

// If stop button clicked, turn crawling flag off.

if (crawling) {

crawling = false;

return;

}

Since the Search button in the interface doubles as both the Search button and the Stop button,

it’s necessary to know which of the two buttons was clicked. When crawling is underway,

the crawling flag is set to true. Thus if the crawling flag is true when the actionsearch( )

method is invoked, the Stop button was clicked. In this scenario, the crawling flag is set

to false and actionSearch( ) returns so that the rest of the method is not executed.

Next, an ArrayList variable, errorList, is initialized:

ArrayList errorList = new ArrayList();

The errorList is used to hold any error messages generated by the next several lines of code

that validate all required search fields have been entered.

It goes without saying that the Search Crawler will not function without a URL that

specifies the location at which to start crawling. The following code verifies that a starting

URL has been entered and that the URL is valid:

// Validate that the start URL has been entered.

String startUrl = startTextField.getText().trim();

if (startUrl.length() < 1) {

errorList.add("Missing Start URL.");

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 9 1

AppDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

// Verify start URL.

else if (verifyUrl(startUrl) == null) {

errorList.add("Invalid Start URL.");

}

If either of these checks fails, an error message is added to the error list.

Next, the Max URLs to Crawl combo box value is validated:

// Validate that Max URLs is either empty or is a number.

int maxUrls = -1;

String max = ((String) maxComboBox.getSelectedItem()).trim();

if (max.length() > 0) {

try {

maxUrls = Integer.parseInt(max);

} catch (NumberFormatException e) {

}

if (maxUrls < 1) {

errorList.add("Invalid Max URLs value.");

}

}

Validating the maximum number of URLs to crawl is a bit more involved than the other

validations in this method. This is because the Max URLs to Crawl field can either contain

a positive number that indicates the maximum number of URLs to crawl or can be left blank

to indicate that no maximum should be used. Initially, maxUrls is defaulted to –1 to indicate

no maximum. If the user enters something into the Max URLs to Crawl field, it is validated

as being a valid numeric value with a call to Integer.parseInt( ). Integer.parseInt( ) converts

a String representation of an integer into an int value. If the String representation cannot be

converted to an integer, a NumberFormatException is thrown and the maxUrls value is not

set. Next, maxUrls is checked to see if it is less than 1. If so, an error is added to the error list.

Next, the Matches Log File and Search String fields are validated:

// Validate that the matches log file has been entered.

String logFile = logTextField.getText().trim();

if (logFile.length() < 1) {

errorList.add("Missing Matches Log File.");

}

// Validate that the search string has been entered.

String searchString = searchTextField.getText().trim();

if (searchString.length() < 1) {

errorList.add("Missing Search String.");

}

If either of these fields has not been entered, an error message is added to the error list.

1 9 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The following code checks to see if any errors have been recorded during validation.

If so, all the errors are concatenated into a single message and displayed with a call to

showError( ).

// Show errors, if any, and return.

if (errorList.size() > 0) {

StringBuffer message = new StringBuffer();

// Concatenate errors into single message.

for (int i = 0; i < errorList.size(); i++) {

message.append(errorList.get(i));

if (i + 1 < errorList.size()) {

message.append("\n");

}

}

showError(message.toString());

return;

}

For efficiency’s sake, a StringBuffer object (referred to by message) is used to hold the

concatenated message. The error list is iterated over with a for loop, adding each message

to message. Notice that each time a message is added, a check is performed to see if the

message is the last in the list or not. If the message is not the last message in the list, a

newline (\n) character is added so that each message will be displayed on its own line in

the error dialog box shown with the showError( ) method.

Finally, after all the field validations are successful, actionSearch( ) concludes by removing

“www” from the starting URL and then calling the search( ) method:

// Remove "www" from start URL if present.

startUrl = removeWwwFromUrl(startUrl);

// Start the Search Crawler.

search(logFile, startUrl, maxUrls, searchString);

The search( ) Method
The search( ) method is used to begin the Web crawling process. Since this process can take

a considerable amount of time to complete, a new thread is created so that the search code

can run independently. This frees up Swing’s event thread, allowing changes in the interface

to take place while crawling is underway.

The search( ) method starts with these lines of code:

// Start the search in a new thread.

Thread thread = new Thread(new Runnable() {

public void run() {

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 9 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



To run the search code in a separate thread, a new Thread object is instantiated with

a Runnable instance passed to its constructor. Instead of creating a separate class that

implements the Runnable interface, the code is in-lined.

Before the search starts, the interface controls are updated to indicate that crawling is

underway, as shown here:

// Show hour glass cursor while crawling is under way.

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

// Disable search controls.

startTextField.setEnabled(false);

maxComboBox.setEnabled(false);

limitCheckBox.setEnabled(false);

logTextField.setEnabled(false);

searchTextField.setEnabled(false);

caseCheckBox.setEnabled(false);

// Switch search button to "Stop."

searchButton.setText("Stop");

First, the application’s cursor is set to the WAIT_CURSOR to signify that the application

is busy. On most operating systems, the WAIT_CURSOR is an hourglass. After the cursor

has been set, each of the search interface controls is disabled by calling the setEnabled( )

method with a false flag on the control. Next, the Search button is changed to read “Stop.”

The Search button is changed, because when searching is underway the button doubles as

a control for stopping the current search.

After disabling the search controls, the Stats section of the interface is reset, as shown here:

// Reset stats.

table.setModel(new DefaultTableModel(new Object[][]{},

new String[]{"URL"}) {

public boolean isCellEditable(int row, int column)

{

return false;

}

});

updateStats(startUrl, 0, 0, maxUrls);

First, the matches table’s data model is reset by passing the setModel( ) method an all new,

empty DefaultTableModel instance. Second, the updateStats( ) method is called to refresh

the progress bar and the status labels.

Next, the log file is opened and the crawling flag is turned on:

// Open matches log file.

try {

logFileWriter = new PrintWriter(new FileWriter(logFile));

} catch (Exception e) {

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

1 9 4 T h e A r t O f J a v a

ApDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



showError("Unable to open matches log file.");

return;

}

// Turn crawling flag on.

crawling = true;

The log file is opened by way of creating a new PrintWriter instance for writing to the

file. If the file cannot be opened, an error dialog box is displayed by calling showError( ).

The crawling flag is set to true to indicate to the actionSearch( ) method that crawling is

underway.

The following code kicks off the actual search crawling by invoking the crawl( ) method:

// Perform the actual crawling.

crawl(startUrl, maxUrls, limitCheckBox.isSelected(),

searchString, caseCheckBox.isSelected());

After crawling has completed, the crawling flag is turned off and the matches log file is

closed, as shown here:

// Turn crawling flag off.

crawling = false;

// Close matches log file.

try {

logFileWriter.close();

} catch (Exception e) {

showError("Unable to close matches log file.");

}

The crawling flag is set to false to indicate that crawling is no longer underway. Next,

the matches log file is closed since crawling is finished. Similar to opening the file, if an

exception is thrown while trying to close the file, an error dialog box will be shown with

a call to showError( ).

Because crawling is finished, the search controls are reactivated by the following code:

// Mark search as done.

crawlingLabel2.setText("Done");

// Enable search controls.

startTextField.setEnabled(true);

maxComboBox.setEnabled(true);

limitCheckBox.setEnabled(true);

logTextField.setEnabled(true);

searchTextField.setEnabled(true);

caseCheckBox.setEnabled(true);

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 9 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Switch search button back to "Search."

searchButton.setText("Search");

// Return to default cursor.

setCursor(Cursor.getDefaultCursor());

First, the Crawling field is updated to display “Done.” Second, each of the search controls

is reenabled. Third, the Stop button is reverted back to displaying “Search.” Finally, the

cursor is reverted back to the default application cursor.

If the search did not yield any matches, the following code displays a dialog box to

indicate this fact:

// Show message if search string not found.

if (table.getRowCount() == 0) {

JOptionPane.showMessageDialog(SearchCrawler.this,

"Your Search String was not found. Please try another.",

"Search String Not Found",

JOptionPane.WARNING_MESSAGE);

}

The search( ) method wraps up with the following lines of code:

}

});

thread.start();

After the Runnable implementation’s run( ) method has been defined, the search thread

is started with a call to thread.start( ). Upon the thread’s execution, the Runnable instance’s

run( ) method will be invoked.

The showError( ) Method
The showError( ) method, shown here, displays an error dialog box on the screen with the

given message. This method is invoked if any required search options are missing or if there

are any problems opening, writing to, or closing the log file.

// Show dialog box with error message.

private void showError(String message) {

JOptionPane.showMessageDialog(this, message, "Error",

JOptionPane.ERROR_MESSAGE);

}

The updateStats( ) Method
The updateStats( ) method, shown here, updates the values displayed in the Stats section

of the interface:

1 9 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 9 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

// Update crawling stats.

private void updateStats(

String crawling, int crawled, int toCrawl, int maxUrls)

{

crawlingLabel2.setText(crawling);

crawledLabel2.setText("" + crawled);

toCrawlLabel2.setText("" + toCrawl);

// Update progress bar.

if (maxUrls == -1) {

progressBar.setMaximum(crawled + toCrawl);

} else {

progressBar.setMaximum(maxUrls);

}

progressBar.setValue(crawled);

matchesLabel2.setText("" + table.getRowCount());

}

First, the crawling results are updated to reflect the current URL being crawled, the

number of URLs crawled thus far, and the number of URLs that are left to crawl. Take note

that the URLs to Crawl field may be misleading. It displays the number of links that have

been aggregated and put in the To Crawl queue, not the difference between the specified

maximum URLs and the number of URLs that have been crawled thus far. Notice also that

when setText( ) is called with crawled and toCrawl, it is passed an empty string (" ") plus

an int value. This is so that Java will convert the int values into String objects, which the

setText( ) method requires.

Next, the progress bar is updated to reflect the current progress made toward finishing

crawling. If the Max URLs to Crawl text field was left blank, which specifies that crawling

should not be capped, the maxUrls variable will have the value –1. In this case, the progress

bar’s maximum is set to the number of URLs that have been crawled plus the number of

URLs left to crawl. If, on the other hand, a Max URLs to Crawl value was specified, it will

be used as the progress bar’s maximum. After establishing the progress bar’s maximum value,

its current value is set. The JProgressBar class uses the maximum and current values to

calculate the percentage shown in text on the progress bar.

Finally, the Search Matches label is updated to reflect the current number of URLs that

contain the specified search string.

The addMatch( ) Method
The addMatch( ) method is called by the crawl( ) method each time a match with the search

string is found. The addMatch( ) method, shown here, adds a URL to both the matches table

and the log file:

// Add match to matches table and log file.

private void addMatch(String url) {

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

// Add URL to matches table.

DefaultTableModel model =

(DefaultTableModel) table.getModel();

model.addRow(new Object[]{url});

// Add URL to matches log file.

try {

logFileWriter.println(url);

} catch (Exception e) {

showError("Unable to log match.");

}

}

This method first adds the URL to the matches table by retrieving the table’s data model

and calling its addRow( ) method. Notice that the addRow( ) method takes an Object array

as input. In order to satisfy that requirement, the url String object is wrapped in an Object

array. After adding the URL to the matches table, the URL is written to the log file with a call

to logFileWriter.println( ). This call is wrapped in a try-catch block; and if an exception is

thrown, the showError( ) method is called to alert the user that an error has occurred while

trying to write to the log file.

The verifyUrl( ) Method
The verifyUrl( ) method, shown here, is used throughout SearchCrawler to verify the

format of a URL. Additionally, this method serves to convert a string representation of a

URL into a URL object:

// Verify URL format.

private URL verifyUrl(String url) {

// Only allow HTTP URLs.

if (!url.toLowerCase().startsWith("http://"))

return null;

// Verify format of URL.

URL verifiedUrl = null;

try {

verifiedUrl = new URL(url);

} catch (Exception e) {

return null;

}

return verifiedUrl;

}

This method first verifies that the given URL is an HTTP URL since only HTTP URLs are

supported by Search Crawler. Next, the URL being verified is used to construct a new URL

1 9 8 T h e A r t O f J a v a

ApDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



object. If the URL is malformed, the URL class constructor will throw an exception resulting

in null being returned from this method. A null return value is used to denote that the string

passed to url is not valid or verified.

The isRobotAllowed( ) Method
The isRobotAllowed( ) method fulfills the robot protocol. In order to fully explain this

method, we’ll review it line by line.

The isRobotAllowed( ) method starts with these lines of code:

String host = urlToCheck.getHost().toLowerCase();

// Retrieve host's disallow list from cache.

ArrayList disallowList =

(ArrayList) disallowListCache.get(host);

// If list is not in the cache, download and cache it.

if (disallowList == null) {

disallowList = new ArrayList();

In order to efficiently check whether or not robots are allowed to access a URL, Search

Crawler caches each host’s disallow list after it has been retrieved. This significantly improves

the performance of Search Crawler because it avoids downloading the disallow list for each

URL being verified. Instead, it just retrieves the list from cache.

The disallow list cache is keyed on the host portion of a URL, so isRobotAllowed( )

starts out by retrieving the urlToCheck’s host by calling its getHost( ) method. Notice that

toLowerCase( ) is tacked on to the end of the getHost( ) call. Lowercasing the host ensures

that duplicate host entries are not placed in the cache. Take note that the host portion of

URLs is case insensitive on the Internet; however, the cache keys are case-sensitive strings.

After retrieving the urlToCheck’s host, an attempt to retrieve a disallow list from the cache

for the host is made. If there is not a list in cache already, null is returned, signaling that the

disallow list must be downloaded from the host. The process of retrieving the disallow list

from a host starts by creating a new ArrayList object.

Next, the contents of the disallow list are populated, beginning with the following lines

of code:

try {

URL robotsFileUrl =

new URL("http://" + host + "/robots.txt");

// Open connection to robot file URL for reading.

BufferedReader reader =

new BufferedReader(new InputStreamReader(

robotsFileUrl.openStream()));

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 9 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 0 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

As mentioned earlier, Web site owners wishing to prevent Web crawlers from crawling their

site, or portions of their site, must have a file called robots.txt at the root of their Web site

hierarchy. The host portion of the urlToCheck is used to construct a URL, robotsFileUrl,

pointing to the robots.txt file. Then a BufferedReader object is created for reading the

contents of the robots.txt file. The BufferedReader’s constructor is passed an instance of

InputStreamReader, whose constructor is passed the InputStream object returned from

calling robotsFileUrl.openStream( ).

The following sequence sets up a while loop for reading the contents of the robots.txt file:

// Read robot file, creating list of disallowed paths.

String line;

while ((line = reader.readLine()) != null) {

if (line.indexOf("Disallow:") == 0) {

String disallowPath =

line.substring("Disallow:".length());

The loop reads the contents of the file, line by line, until the reader.readLine( ) method

returns null, signaling that all lines have been read. Each line that is read is checked to see

if it has a Disallow statement by using the indexOf( ) method defined by String. If the line

does in fact have a Disallow statement, the disallow path is culled from the line by taking

a substring of the line from the point where the string "Disallow:" ends.

As discussed, comments can be interspersed in the robots.txt file by using a hash (#)

character followed by a comment. Since comments will interfere with the Disallow statement

comparisons, they are removed in the following lines of code:

// Check disallow path for comments and remove if present.

int commentIndex = disallowPath.indexOf("#");

if (commentIndex != - 1) {

disallowPath =

disallowPath.substring(0, commentIndex);

}

// Remove leading or trailing spaces from disallow path.

disallowPath = disallowPath.trim();

// Add disallow path to list.

disallowList.add(disallowPath);

}

}

First, the disallow path is searched to see if it contains a hash character. If it does, the disallow

path is substringed, removing the comment from the end of the string. After checking and

potentially removing a comment from the disallow path, disallowPath.trim( ) is called to

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



remove any leading or trailing space characters. Similar to comments, extraneous space

characters will trip up comparisons, so they are removed. Finally, the disallow path is added to

the list of disallow paths.

After the disallow path list has been created, it is added to the disallow list cache, as

shown here:

// Add new disallow list to cache.

disallowListCache.put(host, disallowList);

}

catch (Exception e) {

/* Assume robot is allowed since an exception

is thrown if the robot file doesn't exist. */

return true;

}

}

The disallow path is added to the disallow list cache so that subsequent requests for the list

can be quickly retrieved from cache instead of having to be downloaded again.

If an error occurs while opening the input stream to the robot file URL or while reading

the contents of the file, an exception will be thrown. Since an exception will be thrown if

the robots.txt file does not exist, we’ll assume robots are allowed if an exception is thrown.

Normally, the error checking in this scenario should be more robust; however, for simplicity

and brevity’s sake, we’ll make the blanket decision that robots are allowed.

Next, the following code iterates over the disallow list to see if the urlToCheck is allowed

or not:

/* Loop through disallow list to see if the

crawling is allowed for the given URL. */

String file = urlToCheck.getFile();

for (int i = 0; i < disallowList.size(); i++) {

String disallow = (String) disallowList.get(i);

if (file.startsWith(disallow)) {

return false;

}

}

return true;

Each iteration of the for loop checks to see if the file portion of the urlToCheck is found

in the disallow list. If the urlToCheck’s file does in fact match one of the statements in the

disallow list, then false is returned, indicating that crawlers are not allowed to crawl the given

URL. However, if the list is iterated over and no match is made, true is returned, indicating

that crawling is allowed.

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 0 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The downloadPage( ) Method
The downloadPage( ) method, shown here, simply does as its name implies: it downloads

the Web page at the given URL and returns the contents of the page as a large string:

// Download page at given URL.

private String downloadPage(URL pageUrl) {

try {

// Open connection to URL for reading.

BufferedReader reader =

new BufferedReader(new InputStreamReader(

pageUrl.openStream()));

// Read page into buffer.

String line;

StringBuffer pageBuffer = new StringBuffer();

while ((line = reader.readLine()) != null) {

pageBuffer.append(line);

}

return pageBuffer.toString();

} catch (Exception e) {

}

return null;

}

Downloading Web pages from the Internet in Java is quite simple, as evidenced

by this method. First, a BufferedReader object is created for reading the contents of

the page at the given URL. The BufferedReader’s constructor is passed an instance of

InputStreamReader, whose constructor is passed the InputStream object returned from

calling pageUrl.openStream( ). Next, a while loop is used to read the contents of the

page, line by line, until the reader.readLine( ) method returns null, signaling that all lines

have been read. Each line that is read with the while loop is added to the pageBuffer

StringBuffer instance. After the page has been downloaded, its contents are returned

as a String by calling pageBuffer.toString( ).

If an error occurs when opening the input stream to the page URL or while reading the

contents of the Web page, an exception will be thrown. This exception will be caught by the

empty catch block. The catch block has purposefully been left blank so that execution will

continue to the remaining return null line. A return value of null from this method indicates

to callers that an error occurred.

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

2 0 2 T h e A r t O f J a v a

ApDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 0 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

The removeWwwFromUrl( ) Method
The removeWwwFromUrl( ) method is a simple utility method used to remove the

“www” portion of a URL’s host. For example, take the URL:

http://www.osborne.com

This method removes the “www.” piece of the URL, yielding:

http://osborne.com

Because many Web sites intermingle URLs that do and don’t start with “www”, the

Search Crawler uses this technique to find the “lowest common denominator” URL.

Effectively, both URLs are the same on most Web sites, and having the lowest common

denominator allows the Search Crawler to skip over duplicate URLs that would otherwise

be redundantly crawled.

The removeWwwFromUrl( ) method is shown here:

// Remove leading "www" from a URL's host if present.

private String removeWwwFromUrl(String url) {

int index = url.indexOf("://www.");

if (index != -1) {

return url.substring(0, index + 3) +

url.substring(index + 7);

}

return (url);

}

The removeWwwFromUrl( ) method starts out by finding the index of "://www." inside

the string passed to url. The "://" at the beginning of the string passed to the indexOf( )

method indicates that "www" should be found at the beginning of a URL where the protocol

is defined (for example, http://www.osborne.com). This way, URLs that simply contain the

string "www" are not tampered with. If url contains "://www.", the characters before and

after "www." are concatenated and returned. Otherwise, the string passed to url is returned.

The retrieveLinks( ) Method
The retrieveLinks( ) method parses through the contents of a Web page and retrieves all the

relevant links. The Web page for which links are being retrieved is stored in a large String

object. To say the least, parsing through this string, looking for specific character sequences,

would be quite cumbersome using the methods defined by the String class. Fortunately,

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 0 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

beginning with Java 2, v1.4, Java comes standard with a regular expression API library that

makes easy work of parsing through strings.

The regular expression API is contained in java.util.regex. The topic of regular expressions

is fairly large, and a complete discussion is beyond the scope of this book. However, because

parsing regular expressions is key to Search Crawler, a brief overview is presented here.

An Overview of Regular Expression Processing
As the term is used here, a regular expression is a sequence of characters that describes

a character sequence. This general description, called a pattern, can then be used to find

matches in other character sequences. Regular expressions can specify wildcard characters,

sets of characters, and various quantifiers. Thus, you can specify a regular expression that

represents a general form that can match several different specific character sequences.

There are two classes that support regular expression processing: Pattern and Matcher.

You use Pattern to define a regular expression. To match the pattern against another

sequence, use Matcher.

The Pattern class defines no constructors. Instead, a pattern is created by calling the

compile( ) factory method. The form used here is

static Pattern compile(String pattern, int options)

Here, pattern is the regular expression that you want to use, and options specifies one

or more options that affect matching. The option used by Search Crawler is

Pattern.CASE_INSENSITIVE, which causes the case of the strings to be ignored. The

compile( ) method transforms the string in pattern into a pattern that can be used for pattern

matching by the Matcher class. It returns a Pattern object that contains the pattern.

Once you have created a Pattern object, you will use it to create a Matcher. This is

done by calling the matcher( ) factory method defined by Pattern. It is shown here:

Matcher matcher(CharSequence str)

Here, str is the character sequence that the pattern will be matched against. This is called

the input sequence. CharSequence is an interface that was added by Java 2, v1.4 and

defines a read-only set of characters. It is implemented by the String class, among others.

Thus, you can pass a string to matcher( ).

You will use methods defined by Matcher to perform various pattern-matching

operations. The ones used by retrieveLinks( ) are find( ) and group( ). The find( ) method

determines if a subsequence of the input sequence matches the pattern. The version used

by Search Crawler is shown here:

boolean find( )

It returns true if there is a matching subsequence and false otherwise. This method can be

called repeatedly, allowing it to find all matching subsequences. Each call to find( ) begins

where the previous one left off.

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



You can obtain a string containing a matching sequence by calling group( ). The form

used by Search Crawler is shown here:

String group(int which)

Here, which specifies the sequence (group of characters), with the first group being 1. The

matching string is returned.

Regular Expression Syntax
The syntax and rules that define a regular expression are similar to those used by Perl 5.

Although no single rule is complicated, there are a large number of them, and a complete

discussion is beyond the scope of this book. However, a few of the more commonly used

constructs are described here.

In general, a regular expression is comprised of normal characters, character classes

(sets of characters), wildcard characters, and quantifiers. A normal character is matched

as is. Thus, if a pattern consists of "xy", the only input sequence that will match it is "xy".

Characters such as newlines and tabs are specified using the standard escape sequences,

which begin with a backslash (\). For example, a newline is specified by \n. In the language

of regular expressions, a normal character is also called a literal.

A character class is a set of characters. A character class is specified by putting the

characters in the class between brackets. For example, the class [wxyz] matches w, x, y,

or z. To specify an inverted set, precede the characters with a circumflex (^). For example,

[^wxyz] matches any character except w, x, y, or z. You can specify a range of characters

using a hyphen. For example, to specify a character class that will match the digits 1

through 9, use [1–9].

The wildcard character is the dot (.), and it matches any character. Thus, a pattern that

consists of "." will match these (and other) input sequences: "A", "a", "x", and so on.

A quantifier determines how many times an expression is matched. The quantifiers

are shown here:

+ Match one or more.

* Match zero or more.

? Match zero or one.

For example, the pattern "x+" will match "x", "xx", and "xxx", among others.

A Close Look at retrieveLinks( )
The retrieveLinks( ) method uses the regular expression API to obtain the links from a page.

It begins with these lines of code:

// Compile link matching pattern.

Pattern p =

Pattern.compile("<a\\s+href\\s*=\\s*\"?(.*?)[\"|>]",

Pattern.CASE_INSENSITIVE);

Matcher m = p.matcher(pageContents);

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 0 5

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The regular expression used to obtain links can be broken down as a series of steps, as shown

in the following table:

Character Sequence Explanation
<a Look for the characters "<a".

\\s+ Look for one or more space characters.

href Look for the characters “href”.

\\s* Look for zero or more space characters.

= Look for the character "=".

\\s* Look for zero or more space characters.

\"? Look for zero or one quote character.

(.*?) Look for zero or more of any character until the next part

of the pattern is matched, and place the results in a group.

[\”|>] Look for quote character or greater than (">") character.

Notice that Pattern.CASE_INSENSITIVE is passed to the pattern compiler. As

mentioned, this indicates that the pattern should ignore case when searching for matches.

Next, a list to hold the links is created, and the search for the links begins, as shown here:

// Create list of link matches.

ArrayList linkList = new ArrayList();

while (m.find()) {

String link = m.group(1).trim();

Each link is found by cycling through m with a while loop. The find( ) method of Matcher

returns true until no more matches are found. Each match (link) found is retrieved by calling

the group( ) method defined by Matcher. Notice that group( ) takes 1 as an argument. This

specifies that the first group from the matching sequences be returned. Notice also that trim( ) is

called on the return value from the group( ) method. This removes any unnecessary leading or

trailing space from the value.

Many of the links found in Web pages are not suited for crawling. The following code

filters out several links that the Search Crawler is uninterested in:

// Skip empty links.

if (link.length() < 1) {

continue;

}

// Skip links that are just page anchors.

if (link.charAt(0) == '#') {

continue;

}

// Skip mailto links.

2 0 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



if (link.indexOf("mailto:") != -1) {

continue;

}

// Skip JavaScript links.

if (link.toLowerCase().indexOf("javascript") != -1) {

continue;

}

First, empty links are skipped so as not to waste any more time on them. Second, links that

are simply anchors into a page are skipped by checking to see if the first character of the link

is a hash (#).

Page anchors allow for links to be made to a certain section of a page. Take, for example,

this URL:

http://osborne.com/#contact

This URL has an anchor to the “contact” section of the page located at http://osborne.com.

Links inside the page at http://osborne.com can reference the section relatively as just

“#contact”. Since anchors are not links to “new” pages, they are skipped over.

Next, “mailto” links are skipped. Mailto links are used for specifying an e-mail link in

a Web page. For example, the link

mailto:books@osborne.com

is a mailto link. Since mailto links don’t point to Web pages and cannot be crawled, they are

skipped over. Finally, JavaScript links are skipped. JavaScript is a scripting language that

can be embedded in Web pages for adding interactive functionality to the page. Additionally,

JavaScript functionality can be accessed from links. Similar to mailto links, JavaScript links

cannot be crawled; thus they are overlooked.

As you’ve just seen, the links in Web pages can take many formats, such as mailto and

JavaScript formats. Additionally, traditional links inside Web pages can take a few different

formats as well. Following are the three formats that traditional links can take:

� http://osborne.com/books/ArtofJava

� /books/ArtofJava

� books/ArtofJava

The first of the three links shown here is considered to be a fully qualified URL. The

second example is a shortened version of the first URL, omitting the “host” portion of the

URL. Notice the slash (/) at the beginning of the URL. The slash indicates that the URL is

what’s called “absolute.” Absolute URLs are URLs that start at the root of a Web site. The

third example is again a shortened version of the first URL, omitting the “host” portion of

the URL. Notice that this third example does not have the leading slash. Since the leading

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 0 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

2 0 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

slash is absent, the URL is considered to be “relative.” Relative, in the realm of URLs, means

that the URL address is relative to the URL on which the link is found.

The lines of code in the next section handle converting absolute and relative links into fully

qualified URLs:

// Prefix absolute and relative URLs if necessary.

if (link.indexOf("://") == -1) {

// Handle absolute URLs.

if (link.charAt(0) == '/') {

link = "http://" + pageUrl.getHost() + link;

// Handle relative URLs.

} else {

String file = pageUrl.getFile();

if (file.indexOf('/') == -1) {

link = "http://" + pageUrl.getHost() + "/" + link;

} else {

String path =

file.substring(0, file.lastIndexOf('/') + 1);

link = "http://" + pageUrl.getHost() + path + link;

}

}

}

First, the link is checked to see whether or not it is fully qualified by looking for the

presence of "://" in the link. If these characters exist, the URL is assumed to be fully qualified.

However, if they are not present, the link is converted to a fully qualified URL. As discussed,

links beginning with a slash (/) are absolute, so this code adds "http://" and the current page’s

URL host to the link to fully qualify it. Relative links are converted here in a similar fashion.

For relative links, the current page URL’s filename is taken and checked to see if it contains

a slash (/). A slash in the filename indicates that the file is in a directory hierarchy. For

example, a file may look like this:

dir1/dir2/file.html

or simply like this:

file.html

In the latter case, "http://", the current page’s URL host, and "/" are added to the link since

the current page is at the root of the Web site. In the former case, the “path” (or directory)

portion of the filename is retrieved to create the fully qualified URL. This case concatenates

"http://", the current page’s URL host, the path, and the link together to create a fully

qualified URL.

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 0 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

Next, page anchors and "www" are removed from the fully qualified link:

// Remove anchors from link.

int index = link.indexOf('#');

if (index != -1) {

link = link.substring(0, index);

}

// Remove leading "www" from URL's host if present.

link = removeWwwFromUrl(link);

For the same reason that anchor-only links are skipped over, links with anchors tacked on

to the end are skipped over. The leading "www" is also removed from links so that duplicate

links are skipped over later in this method.

Next, the link is verified to make sure it is a valid URL:

// Verify link and skip if invalid.

URL verifiedLink = verifyUrl(link);

if (verifiedLink == null) {

continue;

}

After validating that the link is a URL, the following code checks to see if the link’s host

is the same as the one specified by Start URL and checks to see if the link has already

been crawled:

/* If specified, limit links to those

having the same host as the start URL. */

if (limitHost &&

!pageUrl.getHost().toLowerCase().equals(

verifiedLink.getHost().toLowerCase()))

{

continue;

}

// Skip link if it has already been crawled.

if (crawledList.contains(link)) {

continue;

}

Finally, the retrieveLinks( ) method ends by adding each link that passes all filters

to the link list.

// Add link to list.

linkList.add(link);

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 1 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

}

return (linkList);

After the while loop finishes and all links have been added to the link list, the link list is

returned.

The searchStringMatches( ) Method
The searchStringMatches( ) method, shown here, is used to search through the contents

of a Web page downloaded during crawling, determining whether or not the specified search

string is present in the page:

/* Determine whether or not search string is

present in the given page contents. */

private boolean searchStringMatches(

String pageContents, String searchString,

boolean caseSensitive)

{

String searchContents = pageContents;

/* If case-sensitive search, lowercase

page contents before comparison. */

if (!caseSensitive) {

searchContents = pageContents.toLowerCase();

}

// Split search string into individual terms.

Pattern p = Pattern.compile("[\\s]+");

String[] terms = p.split(searchString);

// Check to see if each term matches.

for (int i = 0; i < terms.length; i++) {

if (caseSensitive) {

if (searchContents.indexOf(terms[i]) == -1) {

return false;

}

} else {

if (searchContents.indexOf(terms[i].toLowerCase()) == -1) {

return false;

}

}

}

return true;

}

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Because the search string can be either case insensitive (default) or case sensitive,

searchStringMatches( ) starts out by declaring a local variable, searchContents, that

refers to the string to be searched. By default, the pageContents variable is assigned to

searchContents. If the search is case sensitive, however, the searchContents variable

is set to a lowercased version of the pageContents string.

Next, the search string is split into individual search terms using Java’s regular expression

library. To split the search string, first, a regular expression pattern is compiled with the

Pattern object’s static compile( ) method. The pattern used here, "[\\s]+", states that one or

more white space characters (that is, spaces, tabs, or newlines) should be matched. Second,

the compiled Pattern’s split( ) method is invoked with the search string, which yields

a String array containing individual search terms.

After breaking the search string up, the individual terms are cycled through, checking to

see if each term is found in the page’s contents. The indexOf( ) method defined by String is

used to search through the searchContents variable. A return value of –1 indicates that the

search term was not found, and thus false is returned since all terms must be found in order

to have a match. Notice that if the search is case insensitive, the search term is lowercased in

the comparison. This coincides with the value assigned to the searchContents variable at the

beginning of this method. If the for loop executes in its entirety, the searchStringMatches( )

method concludes by returning true, indicating that all terms in the search string matched.

The crawl( ) Method
The crawl( ) method is the core of the search Web crawler because it performs the actual

crawling. It begins with these lines of code:

// Set up crawl lists.

HashSet crawledList = new HashSet();

LinkedHashSet toCrawlList = new LinkedHashSet();

// Add start URL to the To Crawl list.

toCrawlList.add(startUrl);

There are several techniques that can be employed to crawl Web sites, recursion being a

natural choice because crawling itself is recursive. Recursion, however, can be quite resource

intensive, so the Search Crawler uses a queue technique. Here, toCrawlList is initialized to

hold the queue of links to crawl. The start URL is then added to toCrawlList to begin the

crawling process.

After initializing the To Crawl list and adding the start URL, crawling begins with a

while loop set up to run until the crawling flag is turned off or until the To Crawl list has

been exhausted, as shown here:

/* Perform actual crawling by looping

through the To Crawl list. */

while (crawling && toCrawlList.size() > 0)

{

/* Check to see if the max URL count has

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 1 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 1 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

been reached, if it was specified.*/

if (maxUrls != -1) {

if (crawledList.size() == maxUrls) {

break;

}

}

Remember that the crawling flag is used to stop crawling prematurely. If the Stop button

on the interface is clicked during crawling, crawling is set to false. The next time the while

loop’s expression is evaluated, the loop will end because the crawling flag is false. The first

section of code inside the while loop checks to see if the crawling limit specified by maxUrls

has been reached. This check is performed only if the maxUrls variable has been set, as

indicated by a value other than –1.

Upon each iteration of the while loop, the following code is executed:

// Get URL at bottom of the list.

String url = (String) toCrawlList.iterator().next();

// Remove URL from the To Crawl list.

toCrawlList.remove(url);

// Convert string url to URL object.

URL verifiedUrl = verifyUrl(url);

// Skip URL if robots are not allowed to access it.

if (!isRobotAllowed(verifiedUrl)) {

continue;

}

First, the URL at the bottom of the To Crawl list is “popped” off. Thus, the list works in a

first in, first out (FIFO) manner. Since the URLs are stored in a LinkedHashSet object, there

is not actually a “pop” method. Instead, the functionality of a pop method is simulated by

first retrieving the value at the bottom of the list with a call to toCrawlList.iterator( ).next( ).

Then the URL retrieved from the list is removed from the list by calling toCrawlList.remove( ),

passing in the URL as an argument.

After retrieving the next URL from the To Crawl list, the string representation of the URL

is converted to a URL object using the verifyUrl( ) method. Next, the URL is checked to see

whether or not it is allowed to be crawled by calling the isRobotAllowed( ) method. If the

crawler is not allowed to crawl the given URL, then continue is executed to skip to the next

iteration of the while loop.

After retrieving and verifying the next URL on the crawl list, the results are updated in the

Stats section, as shown here:

// Update crawling stats.

updateStats(url, crawledList.size(), toCrawlList.size(),

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



maxUrls);

// Add page to the crawled list.

crawledList.add(url);

// Download the page at the given URL.

String pageContents = downloadPage(verifiedUrl);

The output is updated with a call to updateStats( ). The URL is then added to the crawled

list, indicating that it has been crawled and that subsequent references to the URL should

be skipped. Next, the page at the given URL is downloaded with a call to downloadPage( ).

If the downloadPage( ) method successfully downloads the page at the given URL, the

following code is executed:

/* If the page was downloaded successfully, retrieve all of its

links and then see if it contains the search string. */

if (pageContents != null && pageContents.length() > 0)

{

// Retrieve list of valid links from page.

ArrayList links =

retrieveLinks(verifiedUrl, pageContents, crawledList,

limitHost);

// Add links to the To Crawl list.

toCrawlList.addAll(links);

/* Check if search string is present in

page, and if so, record a match. */

if (searchStringMatches(pageContents, searchString,

caseSensitive))

{

addMatch(url);

}

}

First, the page links are retrieved by calling the retrieveLinks( ) method. Each of the

links returned from the retrieveLinks( ) call is then added to the To Crawl list. Next, the

downloaded page is searched to see if the search string is found in the page with a call to

searchStringMatches( ). If the search string is found in the page, the page is recorded as

a match with the addMatch( ) method.

The crawl( ) method finishes by calling updateStats( ) again at the end of the while loop:

// Update crawling stats.

updateStats(url, crawledList.size(), toCrawlList.size(),

maxUrls);

}

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 1 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The first call to updateStats( ), earlier in this method, updates the label that indicates which

URL is being crawled. This second call updates all the other values because they will have

changed since the first call.

Compiling and Running the Search Web Crawler
As mentioned earlier, SearchCrawler takes advantage of Java’s new regular expression

package: java.util.regex. The regular expression package was introduced in JDK 1.4;

thus you will need to use JDK 1.4 or later to compile and run SearchCrawler.

Compile SearchCrawler like this:

javac SearchCrawler.java

Run SearchCrawler like this:

javaw SearchCrawler

Search Crawler has a simple, yet feature-rich, interface that’s easy to use. First, in the Start

URL field, enter the URL at which you want your search to begin. Next, choose the maximum

number of URLs you want to crawl and whether or not you want to limit crawling to only

the Web site specified in the Start URL field. If you want the crawler to continue crawling

until it has exhausted all links it finds, you can leave the Max URLs to Crawl field blank.

Be forewarned, however, that choosing not to set a maximum value will likely result in

a search that will run for a very long time.

Next you’ll notice a Matches Log File specified for you. This text field is prepopulated,

specifying that the log file be written to a file called crawler.log in the directory that you are

running the Search Crawler from. If you’d like to have the log file written to a different file,

simply enter the new filename. Next, enter the string you want to search for and then select

whether or not you want the search to be case sensitive. Note that entering a search string

containing multiple words requires matching pages to include all the words specified.

Once you have entered all your search criteria and configured the search constraints, click

the Search button. You’ll notice that the search controls become disabled and the Search button

changes to a Stop button. After searching has completed, the search controls will be reenabled,

and the Stop button will revert back to being the Search button. Clicking the Stop button

will cause the crawler to stop crawling after it has finished crawling the URL it is currently

crawling. Figure 6-2 shows the Search Crawler in action.

A few key points about Search Crawler’s functionality:

� Only HTTP links are supported, not HTTPS or FTP.

� URLs that redirect to another URL are not supported.

� Similar links such as “http://osborne.com” and “http://osborne.com/” (notice the

trailing slash) are treated as separate unique links. This is because the Search

Crawler cannot categorically know that both are the same in all instances.

2 1 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 1 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

Web Crawler Ideas
Search Crawler is an excellent illustration of Java’s networking capabilities. It is also

an application that demonstrates the core technology associated with Web crawling. As

mentioned at the start of this chapter, although Search Crawler is useful as is, its greatest

benefit is as a starting point for your own crawler-based projects.

To begin, you might try enhancing Search Crawler. Try changing the way it follows links,

perhaps to use depth-first crawling rather than breadth-first. Also try adding support for

URLs that redirect to other URLs. Experiment with optimizing the search, perhaps by using

additional threads to download multiple pages at the same time.

Next, you will want to try creating your own crawler-based projects. Here are some ideas:

� Broken Link Crawler A broken link crawler could be used to crawl a Web site

and find any links that are broken. Each broken link would be recorded. At the end

of crawling, a report would be generated listing each page that had broken links along

Figure 6-2 The Search Crawler in action

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:12 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



with a breakdown of each broken link on that page. This application would be

especially useful for large Web sites where there are hundreds if not thousands

of pages to check for broken links.

� Comparison Crawler A comparison crawler could be used to crawl several

Web sites in an effort to find the lowest price for a list of products. For example, a

comparison crawler might visit Amazon.com, Barnes&Noble.com, and a few others

to find the lowest prices for books. This technique is often called “screen scraping”

and is used to compare the price of many different types of goods on the Internet.

� Archiver Crawler An archiver crawler could be used to crawl a site and save or

“archive” all of its pages. There are many reasons for archiving a site, including having

the ability to view the site offline, creating a backup, or obtaining a snapshot in time

of the Web site. In fact, a search engine’s use of crawler technology is actually in the

capacity of an archiver crawler. Search engines crawl the Internet and save all the pages

along the way. Afterward they go back and sift through the data and index it so it can

be searched rapidly.

As the preceding ideas show, crawler-based technology is useful in a wide variety of

Web-based applications.

2 1 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:12 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



CHAPTER

7
Rendering HTML

with Java
By James Holmes

217

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 1 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

As all readers know, HTML is at the foundation of the Web. Through the mechanism

of hyperlinks, HTML enables text to be organized in nonlinear ways—something

that is not possible with the traditional, top-down representation. Because of

the power of hyperlinks, HTML is being used in increasing numbers of non-Web-related

applications, too. For example, today many Help files use HTML to represent their information.

Because of the importance of HTML to the modern computing environment, it is not uncommon

to encounter a situation in which the rendering of HTML is either required or desired. In the

past, such a task was challenging because of the richness of the HTML command set and

the need to process hyperlinks. Fortunately, Java simplifies this task, although not all Java

programmers are aware of it.

Support for HTML is included in the Swing framework. This support includes the ability

to display (render) HTML and handle hyperlink event notifications. HTML can be rendered

by the JEditorPane class. Hyperlink events are managed via the HyperlinkEvent class and

the HyperlinkListener interface. Java's built-in support for HTML is a capability that is

often overlooked.

This chapter begins by describing how to render HTML by using JEditorPane and how

to handle hyperlink events. It then demonstrates these capabilities by creating a simple Web

browser. Of course, the rendering of HTML is not limited to browsers. You can use the techniques

described here whenever you need to display and process HTML.

Rendering HTML with JEditorPane
Swing’s JEditorPane class makes the rendering of HTML easy. Simply instantiate a

JEditorPane and then set its content type to "text/html". When displaying HTML, you

will also need to disable editing. The following sequence shows the procedure to follow:

JEditorPane htmlViewer = new JEditorPane();

htmlViewer.setContentType("text/html");

htmlViewer.setEditable(false);

After instantiating a JEditorPane instance called htmlViewer, setContentType( ) is called

to cause htmlViewer to render its content as HTML. Calling setEditable( ) with a parameter of

false prevents the contents of the editor pane from being changed. It also allows HTML tags

to be rendered rather than displayed as tags. These steps are all that is required to prepare

a JEditorPane for rendering HTML and are a perfect example of the art of Java!

Once you have prepared a JEditorPane for HTML, there are two ways you can load

(or display) HTML pages, as shown here:

// Method 1.

htmlViewer.setText("<html>Hello World!</html>");

// Method 2.

try {

htmlViewer.setPage("http://www.dmoz.org/");

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 7 : R e n d e r i n g H T M L w i t h J a v a 2 1 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

} catch (Exception e) {

// Handle error here.

}

The first method makes a call to setText( ), passing in the HTML as a string. The rendered

HTML is then displayed. The second method makes a call to setPage( ), passing in the URL

of a page to display. The browser in this chapter makes exclusive use of the second method.

At the time of this writing, there is one limitation to JEditorPane’s capabilities: it supports

HTML version 3.2. This means that HTML based on a newer specification will not display

correctly. Subsequent releases of Java may change this situation.

CAUTION
At the time of this writing, JEditorPane handles only HTML version 3.2. HTML based on a new version will
not be displayed correctly.

Handling Hyperlink Events
In addition to supporting HTML rendering, Java supports the ability to capture hyperlink

events in HTML pages and act on them accordingly. To capture events from HTML being

rendered in a JEditorPane, a HyperlinkListener has to be registered with the JEditorPane

instance. HyperlinkListener defines only one method, hyperlinkUpdate( ), which has this

general form:

public void hyperlinkUpdate(HyperlinkEvent event)

Here, event contains the hyperlink event that was generated.

To add a HyperlinkListener, use addHyperlinkListener( ) defined by JEditorPane.

For example, here is one way to add a HyperlinkListener to the htmlViewer object created

in the previous section:

htmlViewer.addHyperlinkListener(new HyperlinkListener() {

public void hyperlinkUpdate(HyperlinkEvent event) {

// Handle event here.

}

});

Each time a hyperlink is clicked, a HyperlinkEvent is generated and each registered

HyperlinkListener will be notified by its hyperlinkUpdate( ) method being called. Typically

the hyperlinkUpdate( ) method implementation consists of code for displaying the clicked

link in the JEditorPane. This is how the browser in this chapter handles hyperlink updates.

HyperlinkEvent defines four methods that obtain information about the link:

getDescription( ), getURL( ), getEventType( ), and getSourceElement( ). Each returns

the indicated item. The methods used in this chapter are getURL( ), which returns a URL

object corresponding to the link that was clicked, and getEventType( ), which returns a

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



HyperlinkEvent.EventType object that specifies the type of the event. There are three

possible event types: ACTIVATED, ENTERED, and EXITED. The only one used here is

ACTIVATED, which means that a link has been clicked.

Both HyperlinkEvent and HyperlinkListener are contained in javax.swing.event.

Creating a Mini Web Browser
To illustrate the power of Java’s built-in HTML-rendering functionality, the remainder of this

chapter develops a simple Web browser called Mini Browser. Mini Browser provides basic

Web browsing functionality, such as the ability to move forward and back. Because it uses

the HTML-rendering capabilities of JEditorPane, it supports only HTML 3.2 at the time of

this writing; thus there are some pages that it won't display properly if they are built using a

newer HTML specification. Although Mini Browser has only minimal browsing functionality,

it is easily enhanced. It can also serve as a starting point for your own application development.

Figure 7-1 shows Mini Browser’s window.

At the top of the window there are buttons for moving back and forward through the list of

pages that have been displayed in the browser. There is also a text field for entering the URL

of a page to be displayed in the browser. After a URL has been entered in the text field, the

Go button is used to load the page in the display part of the window.

2 2 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

Figure 7-1 The Mini Browser GUI interface

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 7 : R e n d e r i n g H T M L w i t h J a v a 2 2 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

The MiniBrowser Class
The code for Mini Browser is contained in the MiniBrowser class. MiniBrowser has a

main( ) method, so on execution it will be invoked first. The main( ) method instantiates a

new MiniBrowser object and then calls its show( ) method, which causes it to be displayed.

The MiniBrowser class is shown here and examined in detail in the following sections.

Notice that it extends JFrame and implements HyperlinkListener:

import java.awt.*;

import java.awt.event.*;

import java.net.*;

import java.util.*;

import javax.swing.*;

import javax.swing.event.*;

import javax.swing.text.html.*;

// The Mini Browser.

public class MiniBrowser extends JFrame

implements HyperlinkListener

{

// These are the buttons for iterating through the page list.

private JButton backButton, forwardButton;

// Page location text field.

private JTextField locationTextField;

// Editor pane for displaying pages.

private JEditorPane displayEditorPane;

// Browser's list of pages that have been visited.

private ArrayList pageList = new ArrayList();

// Constructor for Mini Browser.

public MiniBrowser()

{

// Set application title.

super("Mini Browser");

// Set window size.

setSize(640, 480);

// Handle closing events.

addWindowListener(new WindowAdapter() {

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



public void windowClosing(WindowEvent e) {

actionExit();

}

});

// Set up File menu.

JMenuBar menuBar = new JMenuBar();

JMenu fileMenu = new JMenu("File");

fileMenu.setMnemonic(KeyEvent.VK_F);

JMenuItem fileExitMenuItem = new JMenuItem("Exit",

KeyEvent.VK_X);

fileExitMenuItem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionExit();

}

});

fileMenu.add(fileExitMenuItem);

menuBar.add(fileMenu);

setJMenuBar(menuBar);

// Set up button panel.

JPanel buttonPanel = new JPanel();

backButton = new JButton("< Back");

backButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionBack();

}

});

backButton.setEnabled(false);

buttonPanel.add(backButton);

forwardButton = new JButton("Forward >");

forwardButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionForward();

}

});

forwardButton.setEnabled(false);

buttonPanel.add(forwardButton);

locationTextField = new JTextField(35);

locationTextField.addKeyListener(new KeyAdapter() {

public void keyReleased(KeyEvent e) {

if (e.getKeyCode() == KeyEvent.VK_ENTER) {

actionGo();

}

}

2 2 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



});

buttonPanel.add(locationTextField);

JButton goButton = new JButton("GO");

goButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionGo();

}

});

buttonPanel.add(goButton);

// Set up page display.

displayEditorPane = new JEditorPane();

displayEditorPane.setContentType("text/html");

displayEditorPane.setEditable(false);

displayEditorPane.addHyperlinkListener(this);

getContentPane().setLayout(new BorderLayout());

getContentPane().add(buttonPanel, BorderLayout.NORTH);

getContentPane().add(new JScrollPane(displayEditorPane),

BorderLayout.CENTER);

}

// Exit this program.

private void actionExit() {

System.exit(0);

}

// Go back to the page viewed before the current page.

private void actionBack() {

URL currentUrl = displayEditorPane.getPage();

int pageIndex = pageList.indexOf(currentUrl.toString());

try {

showPage(

new URL((String) pageList.get(pageIndex - 1)), false);

}

catch (Exception e) {}

}

// Go forward to the page viewed after the current page.

private void actionForward() {

URL currentUrl = displayEditorPane.getPage();

int pageIndex = pageList.indexOf(currentUrl.toString());

try {

showPage(

new URL((String) pageList.get(pageIndex + 1)), false);

C h a p t e r 7 : R e n d e r i n g H T M L w i t h J a v a 2 2 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:21 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

catch (Exception e) {}

}

// Load and show the page specified in the location text field.

private void actionGo() {

URL verifiedUrl = verifyUrl(locationTextField.getText());

if (verifiedUrl != null) {

showPage(verifiedUrl, true);

} else {

showError("Invalid URL");

}

}

// Show dialog box with error message.

private void showError(String errorMessage) {

JOptionPane.showMessageDialog(this, errorMessage,

"Error", JOptionPane.ERROR_MESSAGE);

}

// Verify URL format.

private URL verifyUrl(String url) {

// Only allow HTTP URLs.

if (!url.toLowerCase().startsWith("http://"))

return null;

// Verify format of URL.

URL verifiedUrl = null;

try {

verifiedUrl = new URL(url);

} catch (Exception e) {

return null;

}

return verifiedUrl;

}

/* Show the specified page and add it to

the page list if specified. */

private void showPage(URL pageUrl, boolean addToList)

{

// Show hourglass cursor while crawling is under way.

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

try {

2 2 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:22 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Get URL of page currently being displayed.

URL currentUrl = displayEditorPane.getPage();

// Load and display specified page.

displayEditorPane.setPage(pageUrl);

// Get URL of new page being displayed.

URL newUrl = displayEditorPane.getPage();

// Add page to list if specified.

if (addToList) {

int listSize = pageList.size();

if (listSize > 0) {

int pageIndex =

pageList.indexOf(currentUrl.toString());

if (pageIndex < listSize - 1) {

for (int i = listSize - 1; i > pageIndex; i--) {

pageList.remove(i);

}

}

}

pageList.add(newUrl.toString());

}

// Update location text field with URL of current page.

locationTextField.setText(newUrl.toString());

// Update buttons based on the page being displayed.

updateButtons();

}

catch (Exception e)

{

// Show error message.

showError("Unable to load page");

}

finally

{

// Return to default cursor.

setCursor(Cursor.getDefaultCursor());

}

}

/* Update Back and Forward buttons based on

the page being displayed. */

private void updateButtons() {

C h a p t e r 7 : R e n d e r i n g H T M L w i t h J a v a 2 2 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:22 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

if (pageList.size() < 2) {

backButton.setEnabled(false);

forwardButton.setEnabled(false);

} else {

URL currentUrl = displayEditorPane.getPage();

int pageIndex = pageList.indexOf(currentUrl.toString());

backButton.setEnabled(pageIndex > 0);

forwardButton.setEnabled(

pageIndex < (pageList.size() - 1));

}

}

// Handle hyperlinks being clicked.

public void hyperlinkUpdate(HyperlinkEvent event) {

HyperlinkEvent.EventType eventType = event.getEventType();

if (eventType == HyperlinkEvent.EventType.ACTIVATED) {

if (event instanceof HTMLFrameHyperlinkEvent) {

HTMLFrameHyperlinkEvent linkEvent =

(HTMLFrameHyperlinkEvent) event;

HTMLDocument document =

(HTMLDocument) displayEditorPane.getDocument();

document.processHTMLFrameHyperlinkEvent(linkEvent);

} else {

showPage(event.getURL(), true);

}

}

}

// Run Mini Browser.

public static void main(String[] args) {

MiniBrowser browser = new MiniBrowser();

browser.show();

}

}

The MiniBrowser Variables
MiniBrowser begins by declaring a few instance variables, most of which hold references

to the interface controls. First, the JButton instances that support the Back and Forward

buttons are declared. These buttons are used to navigate through the list of pages visited in

the browser. Second, locationTextField, which is a reference to a JTextField, is declared.

Into this text field the user enters the location (or URL) of pages to be displayed in the browser.

Next, displayEditorPane is declared. This is a reference to the JEditorPane instance that

will be used to display the Web pages. Finally, pageList is declared. It will refer to the list

of pages the browser has visited.

2 2 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:22 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The MiniBrowser Constructor
When MiniBrowser is instantiated, all the interface controls are initialized inside its constructor.

The constructor contains a lot of code, but most of it is straightforward. The following discussion

gives an overview.

First, the window title is set. Next, the call to setSize( ) establishes the window’s width

and height in pixels. After that, a window listener is added by calling addWindowListener( ),

passing a WindowAdapter object that overrides the windowClosing( ) event handler. This

handler calls the actionExit( ) method when the window is closed. Next, a menu bar with a

File menu is added to the window.

Similar to other applications in this book, the next several lines of the constructor initialize

and lay out the interface controls. First, the button panel is set up. The button panel contains

the Back, Forward, and Go buttons, along with the location text field. An ActionListener is

added to each of the buttons so that the corresponding action method is called each time the

button is clicked. Similarly, a KeyAdapter is added to the location text field so that the

actionGo( ) method is invoked each time the ENTER key is pressed inside the text field.

The editor pane for displaying pages is set up next. There are three things to take note of

here. First, the editor’s content type is set to "text/html", which causes the editor to display

HTML pages. Second, the setEditable( ) method is passed a false flag to indicate that the

editor should not allow its contents to be edited, which enables the HTML tags to be rendered.

Third, displayEditorPane.addHyperlinkListener( ) is called to register the browser to

receive HyperlinkEvents.

The MiniBrowser constructor ends by adding the button panel and editor pane to the

interface. Notice that the editor pane is wrapped in a JScrollPane instance. This makes the

editor pane scrollable.

The actionBack( ) Method
The actionBack( ) method, shown here, is invoked each time the Back button is clicked and

is used for navigating back a page in the list of pages that have been visited in the browser:

// Go back to the page viewed before the current page.

private void actionBack() {

URL currentUrl = displayEditorPane.getPage();

int pageIndex = pageList.indexOf(currentUrl.toString());

try {

showPage(

new URL((String) pageList.get(pageIndex - 1)), false);

}

catch (Exception e) {}

}

This method first retrieves the URL of the page currently being displayed in the browser

by calling displayEditorPane.getPage( ). Next, the page’s index in the page list is retrieved

by using the indexOf( ) method of ArrayList. It takes an object reference and returns the

C h a p t e r 7 : R e n d e r i n g H T M L w i t h J a v a 2 2 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:22 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



index for the object in the list. Finally, showPage( ) is called to display the previous page,

which is one page back from the current page. Notice that false is passed as the second

argument to the showPage( ) method. This specifies that the page being displayed should not

be added to the page list, because it is not a new page and is already in the list. The showPage( )

call is wrapped in a try-catch block because the URL constructor can throw an exception if

something goes wrong in the creation of the URL from a string. Since all the pages in the

page list have already been run through the verifyUrl( ) method, the catch block is left empty.

The actionForward( ) Method
The actionForward( ) method, shown here, is invoked each time the Forward button is

clicked and is used for navigating forward a page in the list of pages that have been visited

in the browser:

// Go forward to the page viewed after the current page.

private void actionForward() {

URL currentUrl = displayEditorPane.getPage();

int pageIndex = pageList.indexOf(currentUrl.toString());

try {

showPage(

new URL((String) pageList.get(pageIndex + 1)), false);

}

catch (Exception e) {}

}

The same as actionBack( ), this method first retrieves the URL of the page currently

being displayed in the browser by calling displayEditorPane.getPage( ). Next, the page’s

index in the page list is retrieved by using the indexOf( ) method of ArrayList. It then takes

an object reference and returns the index for the object in the list. Finally, showPage( ) is

called to display the next page, which is one page forward from the current page. Notice that

false is passed as the second argument to the showPage( ) method. This specifies that the

page being displayed should not be added to the page list, because it is not a new page and

is already in the list. The showPage( ) call is wrapped in a try-catch block because the URL

constructor can throw an exception if something goes wrong in the creation of the URL from

a string. Since all the pages in the page list have already been run through the verifyUrl( )

method, the catch block is left empty.

The actionGo( ) Method
Each time a page URL is entered into the location text field and the Go button is clicked,

the actionGo( ) method is invoked. Additionally, actionGo( ) is invoked if the ENTER key

is entered into the location text field. The actionGo( ) method is shown here:

// Load and show the page specified in the location text field.

private void actionGo() {

2 2 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:22 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 7 : R e n d e r i n g H T M L w i t h J a v a 2 2 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

URL verifiedUrl = verifyUrl(locationTextField.getText());

if (verifiedUrl != null) {

showPage(verifiedUrl, true);

} else {

showError("Invalid URL");

}

}

The actionGo( ) method starts out by verifying the URL entered into the location text field

by calling the verifyUrl( ) method. The verifyUrl( ) method returns a URL object that has

been verified or returns null if the URL specified is invalid. If the URL entered is valid,

showPage( ) is called to display the page. Otherwise, an error is presented to the user with

a call to showError( ).

The showError( ) Method
The showError( ) method, shown here, displays an error dialog box on the screen with the

given message. This method is invoked throughout MiniBrowser any time an error condition

occurs:

// Show dialog box with error message.

private void showError(String errorMessage) {

JOptionPane.showMessageDialog(this, errorMessage,

"Error", JOptionPane.ERROR_MESSAGE);

}

The verifyUrl( ) Method
The verifyUrl( ) method, shown here, is used by the actionGo( ) method to verify the format

of a URL. Additionally, this method serves to convert a string representation of a URL into a

URL object:

// Verify URL format.

private URL verifyUrl(String url) {

// Only allow HTTP URLs.

if (!url.toLowerCase().startsWith("http://"))

return null;

// Verify format of URL.

URL verifiedUrl = null;

try {

verifiedUrl = new URL(url);

} catch (Exception e) {

return null;

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:22 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

return verifiedUrl;

}

This method first verifies that the given URL is an HTTP URL since only HTTP URLs are

supported by Mini Browser. Next, the URL being verified is used to construct a new URL

object. If the URL is malformed, the URL class constructor will throw an exception resulting

in null being returned from this method. A null return value indicates that the string passed

to url is not valid or verified.

The showPage( ) Method
The showPage( ) method loads and displays pages in Mini Browser’s display editor pane.

Because it handles much of the action, showPage( ) is examined line by line. It begins with

these lines of code:

private void showPage(URL pageUrl, boolean addToList)

{

// Show hourglass cursor while crawling is under way.

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

The method is passed the URL of the page to display and a flag that indicates if the page is

to be added to the page list. Next, the cursor is set to the WAIT_CURSOR to signify that

the application is busy. On most operating systems, the WAIT_CURSOR is an hourglass.

After setting the cursor, the specified page is displayed in the editor pane, as shown here:

try {

// Get URL of page currently being displayed.

URL currentUrl = displayEditorPane.getPage();

// Load and display specified page.

displayEditorPane.setPage(pageUrl);

// Get URL of new page being displayed.

URL newUrl = displayEditorPane.getPage();

Before loading the new page in the editor pane, the URL of the page currently being displayed

is recorded. The current page is recorded so that it can be used later in this method if the page

being loaded is to be added to the page list. The new page is loaded next. After loading the

new page, its URL is recorded so that it also can be used later in this method if it is to be

added to the page list.

The next few lines of code check to see if the page passed to showPage( ) should be added

to the page list and, if so, add it to the list:

// Add page to list if specified.

if (addToList) {

2 3 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:22 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 7 : R e n d e r i n g H T M L w i t h J a v a 2 3 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

int listSize = pageList.size();

if (listSize > 0) {

int pageIndex =

pageList.indexOf(currentUrl.toString());

if (pageIndex < listSize - 1) {

for (int i = listSize - 1; i > pageIndex; i--) {

pageList.remove(i);

}

}

}

pageList.add(newUrl.toString());

}

If the addToList flag is set to true, the page being displayed is added to the page list.

First, the page list’s size is retrieved. If the list has at least one page in it, the index of the

page last displayed is retrieved. If this index is less than the size of the list, then all pages in

the list after the page last displayed are removed. This is so that there are no longer any more

pages to go forward to.

Next, the user interface is updated, as shown here:

// Update location text field with URL of current page.

locationTextField.setText(newUrl.toString());

// Update buttons based on the page being displayed.

updateButtons();

First, the location text field is updated to reflect the current URL being displayed in the

browser. Second, the updateButtons( ) method is called to enable or disable the Back and

Forward buttons based on the position of the current page in the page list.

If an exception is thrown while trying to load the new page, the catch block, shown in the

following code, is executed:

}

catch (Exception e)

{

// Show error message.

showError("Unable to load page");

}

If an exception occurs, the showError( ) method is called to display an error message to

the user.

The showPage( ) method wraps up by specifying a finally clause for the try-catch block.

The finally clause is used to ensure that the application cursor gets set back to its default state:

finally

{

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:22 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 3 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

// Return to default cursor.

setCursor(Cursor.getDefaultCursor());

}

The updateButtons( ) Method
The updateButtons( ) method, shown here, updates the state of the Back and Forward buttons

on the button panel based on the position inside the page list of the page currently being

displayed. This method is invoked by the showPage( ) method each time a page is displayed:

/* Update Back and Forward buttons based on

the page being displayed. */

private void updateButtons() {

if (pageList.size() < 2) {

backButton.setEnabled(false);

forwardButton.setEnabled(false);

} else {

URL currentUrl = displayEditorPane.getPage();

int pageIndex = pageList.indexOf(currentUrl.toString());

backButton.setEnabled(pageIndex > 0);

forwardButton.setEnabled(

pageIndex < (pageList.size() - 1));

}

}

If there are fewer than two pages in the page list, both the Back and Forward buttons are

disabled, giving them a grayed-out appearance. This is because there are no pages to go back

or forward to. However, if there are at least two pages in the page list, each button’s state will

be set based on where the page currently being displayed is relative to its position in the page

list. If pageIndex is greater than 0, meaning that there are pages in the page list before the

current page, the Back button is enabled. If the pageIndex is less than the number of pages

in the page list minus 1 (since the index is 0-based), then the Forward button is enabled.

The hyperlinkUpdate( ) Method
The hyperlinkUpdate ( ) method is shown next. It fulfills the HyperlinkListener interface

contract allowing the MiniBrowser class to receive notifications each time a hyperlink event,

such as a hyperlink being clicked, occurs in the display editor pane.

// Handle hyperlinks being clicked.

public void hyperlinkUpdate(HyperlinkEvent event) {

HyperlinkEvent.EventType eventType = event.getEventType();

if (eventType == HyperlinkEvent.EventType.ACTIVATED) {

if (event instanceof HTMLFrameHyperlinkEvent) {

HTMLFrameHyperlinkEvent linkEvent =

(HTMLFrameHyperlinkEvent) event;

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:22 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



HTMLDocument document =

(HTMLDocument) displayEditorPane.getDocument();

document.processHTMLFrameHyperlinkEvent(linkEvent);

} else {

showPage(event.getURL(), true);

}

}

}

The hyperlinkUpdate( ) method is passed a HyperlinkEvent object that encapsulates

all of the information related to the hyperlink event that has occurred. First, the event’s

type is checked to see if it is ACTIVATED, which specifies that the link has been clicked.

Next, the event is checked to see if it is an instance of HTMLFrameHyperlinkEvent,

which indicates that a link within an HTML frame was clicked. If so, the event is cast to

HTMLFrameHyperlinkEvent and stored in linkEvent. Next, the call to displayEditorPane

.getDocument( ) obtains the document instance associated with the page. In this case, the

document is of type HTMLDocument. Finally, processHTMLFrameHyperlinkEvent( )

is called with linkEvent as an argument. This process allows links inside of HTML frames

to be processed.

If the event is not an HTMLFrameHyperlinkEvent, the link is a standard link and its

URL is obtained by calling getURL( ). The page associated with this URL is then displayed

in the editor pane by calling showPage( ).

Compiling and Running the Mini Web Browser
Compile MiniBrowser like this:

javac MiniBrowser.java

Run MiniBrowser like this:

javaw MiniBrowser

NOTE
You must compile and run MiniBrowser with a JDK other than 1.4.0. For example, JDK 1.4.2 works fine.
Compiling with JDK 1.4.0 causes JEditorPane to exhibit erroneous behavior that prevents many Web sites
from working with MiniBrowser.

Using Mini Browser is similar to using a full-featured browser. First, enter the URL of the page

you want to view and then click the Go button. This will load the specified page in the browser.

After visiting more than one page with Mini Browser, you’ll notice that the Back and Forward

buttons become enabled. Each of the buttons is independently enabled based on which page

is being displayed in the browser relative to the current page’s position in the page list. To go

back to the previous page viewed, click the Back button. To go forward to the page viewed

after the current page, click the Forward button. Figure 7-2 shows Mini Browser in action.

C h a p t e r 7 : R e n d e r i n g H T M L w i t h J a v a 2 3 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:23 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



HTML Renderer Possibilities
The ease with which HTML can be handled by JEditorPane opens the door to a number of

interesting possibilities. As mentioned at the start of this chapter, representing Help information

as HTML is especially useful. Online user documentation is also a good candidate for

representation in HTML. For example, you might use HTML to display a tutorial that shows

novices how to use an application that you created. Both the Help information and the tutorial

can be displayed via JEditorPane. Here is one other idea. Try using HTML for error messages.

The message could contain hyperlinks to further information.

2 3 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 7

Figure 7-2 Mini Browser in action

P:\010Comp\ApDev\971-3\ch07.vp
Tuesday, July 08, 2003 9:05:23 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



CHAPTER

8
Statistics, Graphing,

and Java
by Herb Schildt

235

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:49 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 3 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

A main use of Java is to create small programs, such as applets or servlets, that

process and display data. This data is often in the form of numeric values, such

as stock prices, daily temperatures, customer traffic, and so on. It is frequently

desirable to obtain and display various statistics relating to this data and to plot the data in

a graphic form. For example, an applet might display the average price of a share of stock

over the past month and plot the share prices using a bar graph. Because statistics and

graphing in one form or another are so often required in Java programming, they are the

subject of this chapter.

This chapter develops methods that find the following statistics:

� Mean

� Median

� Mode

� Standard deviation

� Regression equation (the line of best fit)

� Coefficient of correlation

The chapter also develops graphing methods that display the data in a bar graph or scatter

graph. The examples found here can be used as is or tailored to fit your own specific needs.

This chapter also utilizes two important aspects of Java: its mathematical processing

abilities and its GUI-based graphics abilities. Mathematical computation is not something

for which Java was optimized, but it is an area for which Java provides extensive support.

Although none of the computations in this chapter are very demanding, they still illustrate

the ease with which Java handles number crunching.

Java was, however, designed from the start for GUI-based applications. Java provides a

rich assortment of classes that support a window-based interface. As you probably know,

Java supports GUIs in two ways: with the Abstract Window Toolkit (AWT) and with Swing.

Because Swing is featured prominently in preceding chapters, the AWT is used here. You will

see how the AWT can be used to create stand-alone windows and handle resizing, repainting,

and other events. Because of features unique to Java, such as inner classes and adaptor classes,

GUI-based code in Java is cleaner and smaller than similar code produced by other languages.

Samples, Populations, Distributions, and Variables
Before beginning, it is necessary to define a few key terms and concepts relating to statistics.

Generally, statistical information is derived by taking a sample of specific data points and

then making generalizations from them. Each sample comes from the universe of all possible

outcomes for the situation under study, which is called the population. For example, you

might measure the output of a box factory over the course of one year by generalizing from

the Wednesday output figures. In this case, the sample would consist of a year’s worth of

Wednesday figures.

If the sample is exhaustive, then it equals the population. In the case of the box factory, if

the sample included every day’s output for a year, then the sample would equal the population.

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:50 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Whenever the sample is less than the population, there is the possibility for error, and often

the error factor can be known. For this chapter, we will be assuming that the sample equals

the population, and we will not be concerned with issues surrounding sample errors.

Statistical information is affected by the way events are distributed in the population.

Several distributions are possible, but the most common, and the only one we will be using,

is the normal distribution, or “bell curve,” with which you are undoubtedly familiar. In a bell

curve, elements are symmetrically distributed around the middle (or peak) of the curve.

In any statistical process, there is a dependent variable, which is the number under study,

and an independent variable, which is the quantity that determines the dependent variable.

This chapter uses time for the independent variable—that is, the stepwise incremental

passage of events as measured in whole number units. The use of time for the independent

variable is quite common. For example, in watching a stock portfolio, you might monitor its

value on a daily basis.

The Basic Statistics
At the core of most statistical analysis are three quantities: the mean, the median, and

the mode. Each is useful on its own, but combined they paint a fairly clear picture of the

characteristics of a sample.

The statistical methods in this chapter assume that the elements that comprise the sample

are stored in an array of double. All of the statistical methods are static methods stored in a

class called Stats, which is shown in its entirety later in the chapter. Because they are static,

they can be called without having to create a Stats object.

The Mean
The mean is the most commonly used statistic because it is the arithmetic average of a set of

values. Thus, the mean is the “center of gravity” of the data. To compute the mean, divide the

sum of the elements in the sample by the number of the elements. For example, the sum of

these values

1 2 3 4 5 6 7 8 9 10

is 55. Dividing that value by the number of elements in the sample, which is 10, yields the

mean, which is 5.5 in this example. Thus, the formula for finding the mean is

Here, D
i
represents an element of data, and N is the number of elements in the sample.

The following method called mean( ) computes the mean of the elements contained in the

array referred to by its parameter. The mean is returned.

// Return the average of a set of values.

public static double mean(double[] vals) {

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 3 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:50 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



double avg = 0.0;

for(int i=0; i < vals.length; i++)

avg += vals[i];

avg /= vals.length;

return avg;

}

To use mean( ), simply call it with a reference to an array containing a set of values, and

the mean is returned.

The Median
The median of a sample is the middle value based on order of magnitude. For example, in the

sample set

1 2 3 4 5 6 7 8 9

the median is 5. For samples with an even number of elements, the median is the average

of the two middle values. For example:

1 2 3 4 5 6 7 8 9 10

Here, the median is 5.5. For a sample that has a normal distribution, the median and the mean

will be similar. However, as the distribution of elements within a sample moves further away

from a normal distribution curve, the difference between the median and the mean increases.

An easy way to obtain the median of a sample is first to sort the data and then take the

middle value. This is the way the median( ) method, shown here, works:

// Return the median of a set of values.

public static double median(double[] vals) {

double temp[] = new double[vals.length];

System.arraycopy(vals, 0, temp, 0, vals.length);

Arrays.sort(temp); // sort the data

// Return the middle value.

if((vals.length)%2==0) {

// If even number of values, find average

return (temp[temp.length/2] +

temp[(temp.length/2)-1]) /2;

} else return

2 3 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:50 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



temp[temp.length/2];

}

To use median( ), simply pass a reference to an array containing the values, and the middle

value is returned.

Notice that a copy of the array is made by calling System.arraycopy( ). It is the copy that

is sorted. The copy, not the original array, must be sorted to avoid changing the order of the

original data. The original order is important for displaying the data in graphical form, as

well as for certain other statistical measurements.

The Mode
The mode of a sample is the value of the most frequently occurring element. For example,

given the sample

1 2 3 3 4 5 6 7 7 7 8 9

the mode is 7 because it occurs more than any other element. The mode may not be unique.

For example, given

10 20 30 30 40 50 60 60 70

both 30 and 60 occur twice. Either could be the mode. Such a set is referred to as bimodal.

A set that has only one mode is called unimodal. For the purposes of this book, when a set

contains more than one mode, the first one found is used. If no value occurs more often than

any other, the sample has no mode.

The following mode( ) method finds the mode for a set of values:

/* Returns the mode of a set of values.

A NoModeException is thrown if no value

occurs more frequently than any other.

If two or more values occur with the

same frequency, the first value is

returned. */

public static double mode(double[] vals)

throws NoModeException

{

double m, modeVal = 0.0;

int count, oldcount = 0;

for(int i=0; i < vals.length; i++) {

m = vals[i];

count = 0;

// Count how many times each value occurs.

for(int j=i+1; j < vals.length; j++)

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 3 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:50 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



if(m == vals[j]) count++;

/* If this value occurs more frequently than

the previous candidate, save it. */

if(count > oldcount) {

modeVal = m;

oldcount = count;

}

}

if(oldcount == 0)

throw new NoModeException();

else

return modeVal;

}

The mode( ) method works by counting the number of times a value occurs within the

vals array. If it finds a value repeated more often than the previous candidate, that new value

is stored in modeVal. After the process ends, the mode is contained in modeVal, and this is

the value returned. For samples having more than one mode, mode( ) returns the first mode.

If the sample contains no mode, a NoModeException is thrown. The NoModeException

class is shown here:

// This is the exception thrown by mode()

class NoModeException extends Exception {

public String toString() {

return "Set contains no mode.";

}

}

Variance and Standard Deviation
Although a “one number” summary, such as the mean or median, is very convenient, it

suffers from the fact that in certain circumstances, it can mislead rather than inform. For

example, if a sample has values clustered on the extremes, then the mean and median do

not fairly represent the set. Consider this sample:

10, 11, 9, 1, 0, 2, 3, 12, 11, 10

The mean is 6.9, but this value is hardly representative of the sample because no value is

close to it. The problem with the mean in this case is that it does not convey any information

about the variations or spread of the data. To illuminate the mean, it is necessary to know

how close each element is to it. In essence, knowing the dispersion of the data helps you

better interpret the mean, median, and mode.

2 4 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:50 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



To find the variability of a sample, you must compute its standard deviation. The standard

deviation is derived from the variance. Both are values that represent the dispersion of the

data. Of the two, the standard deviation is the most important because it can be thought of

as the average of the distances between each value in the sample and the mean.

The variance is computed as shown here:

Here, N is the number of elements in the set, M is the mean, and D
i
is an individual value

from the sample. It is necessary to square the differences of the mean from each element to

produce a positive outcome. If the difference were not squared, the result would always be zero.

The standard deviation is derived by finding the square root of the variance. Thus, the

formula for the standard deviation is shown here:

As mentioned, the standard deviation is usually more useful than the variance. Consider

the following set:

11 20 40 30 99 30 50

The variance is computed by first finding the mean, which is 40. Next, the average distance

each element is from the mean is computed, as shown here:

Di Di–M (Di–M)2

11 –29 841

20 –20 400

40 00 0

30 –10 100

99 59 3481

30 –10 100

50 10 100

Sum: 5022

Mean of sum: 717.43

As the chart shows, the average of the squared differences is 717.43. To derive the

standard deviation, simply find the square root of that value. The result is approximately

26.78. To interpret the standard deviation, remember that it is the average distance from

the mean of each element in the sample.

The standard deviation tells you how representative the mean is of the entire sample. For

example, if you owned a candy bar factory and your plant foreman reported that the daily

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 4 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:51 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 4 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

output averaged 2,500 bars last month but that the standard deviation was 2,000, you would

have a pretty good idea that the production line needed better supervision!

Here is an important rule of thumb: assuming that the data you are using conforms to a

normal distribution, about 68 percent of the data will be within one standard deviation from

the mean, and about 95 percent will be within two standard deviations.

The stdDev( ) method shown next computes the standard deviation of an array of values:

// Return the standard deviation of a set of values.

public static double stdDev(double[] vals) {

double std = 0.0;

double avg = mean(vals);

for(int i=0; i < vals.length; i++)

std += (vals[i]-avg) * (vals[i]-avg);

std /= vals.length;

std = Math.sqrt(std);

return std;

}

The Regression Equation
One of the most common uses of statistical information is to make projections about the

future. Even though past data does not necessarily predict future events, often such trend

analysis is still useful. Perhaps the most widely used statistical tool for trend analysis is the

regression equation. This is the equation of a straight line that best fits the data, and it is often

referred to as the regression line, the least square line, or the line of best fit.

Before describing how to find the line of best fit, recall that a line in two-dimensional

space has this equation:

Y = a + bX

Here, X is the independent variable, Y is the dependent variable, a is the Y-intercept, and

b is the slope of the line. Therefore, to find a line that best fits a set of values, you must

determine the values of a and b.

To find the regression equation, we will use the method of least squares. The general idea

is to find the line that minimizes the sum of the squares of the deviations between the actual

data and the line. To find this equation involves two steps. First, you compute b using the

following formula:

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:51 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Here, M
x
is the mean of the X coordinate, and M

y
is the mean of the Y coordinate. Having

found b, a is computed by this formula:

a = M
y

– bM
x

Given the regression equation, it is possible to plug in any value for X and find the projected

value for Y.

To understand the significance and value of the regression line, consider this example.

Assume that a study tracked the average price of a share of stock for XYZ Inc. over a period

of ten years. The data collected is shown here:

Year Price
0 68

1 75

2 74

3 80

4 81

5 85

6 82

7 87

8 91

9 94

The regression equation for this data is

Y = 70.22 + 2.55 X

The data and the regression line are shown in Figure 8-1. As the figure shows, the regression

line is sloping upward (positively). This indicates an upward trend in stock prices. Notice

also that the line closely fits the data. Using this line, one might predict that in year 11 the

share price will increase to 98.27. (This is found by substituting 11 for X in the equation and

solving for Y.) Of course, such a prediction is only that: a prediction. There is no guarantee

that the prediction will come true!

The Correlation Coefficient
Although the regression line in Figure 8-1 seems to indicate an upward trend, we don’t know

how well this line actually fits the data. If the line and data have only a slight correlation, the

regression line is of little interest. If the line fits the data well, it is of much greater value.

The most common way to determine the correlation of the data to the regression line is

to compute the correlation coefficient, which is a number between –1 and 1. The correlation

coefficient represents the amount of deviation from the mean that is explained by the line.

This may sound confusing, but it really isn’t. The correlation coefficient is related to the

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 4 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



distance each data point is from the line. If the correlation coefficient is 1, the data corresponds

perfectly to the line. A coefficient of 0 means that there is no correlation between the line and

the data. (In this case, any line would be about as good!) The sign of the correlation coefficient

must be set according to the sign of the slope of the regression line, which is b. If the

correlation coefficient is positive, it means that there is a direct relationship between the

dependent variable and the independent variable. If the correlation coefficient is negative,

then an inverse relationship exists.

The formula to find the correlation coefficient is

where M
x
is the mean of X and M

y
is the mean of Y. The sign is set based on the sign of

the slope of the regression line. Generally, an absolute value of 0.81 or greater is considered

a strong correlation. It means that about 66 percent of the data fits the regression line. To

convert any correlation coefficient into a percentage, simply square it. This squared value

is called the coefficient of determination.

The regress( ) method, shown next, computes the regression equation and the correlation

coefficient:

/* Compute the regression equation and coefficient

of correlation for a set of values.  The

values represent the Y coordinate.  The X

coordinate is time (i.e., ascending increments

of 1). */

2 4 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

Figure 8-1 A graph of the average share price and regression line

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



public static RegData regress(double[] vals) {

double a, b, yAvg, xAvg, temp, temp2, cor;

double vals2[] = new double[vals.length];

// Create number format with 2 decimal digits.

NumberFormat nf = NumberFormat.getInstance();

nf.setMaximumFractionDigits(2);

// Find mean of Y values.

yAvg = mean(vals);

// Find mean of X component.

xAvg = 0.0;

for(int i=0; i < vals.length; i++) xAvg += i;

xAvg /= vals.length;

// Find b.

temp = temp2 = 0.0;

for(int i=0; i < vals.length; i++) {

temp += (vals[i]-yAvg) * (i-xAvg);

temp2 += (i-xAvg) * (i-xAvg);

}

b = temp/temp2;

// Find a.

a = yAvg - (b*xAvg);

// Compute the coefficient of correlation.

for(int i=0; i < vals.length; i++) vals2[i] = i+1;

cor = temp/vals.length;

cor /= stdDev(vals) * stdDev(vals2);

return new RegData(a, b, cor, "Y = " +

nf.format(a) +  " + " +

nf.format(b) + " * X");

}

}

It is important to point out that regress( ) assumes that the independent variable (X) is

time—that is, the stepwise progression of events represented in units of one. The mean of

the X values is computed using this sequence:

// Find mean of X component.

xAvg = 0.0;

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 4 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



for(int i=0; i < vals.length; i++) xAvg += i;

xAvg /= vals.length;

Here, the values from 0 to the number of elements in the set are summed and then divided by

the number of the elements. This yields the average of X.

Because time is used for the X axis, regress( ) performs what is sometimes called a time-

series analysis. This is why only a single array of values need be passed. It would be possible

to modify regress( ) to accept two arrays, one containing the Y values and one containing the

X values, but this was not necessary for the purposes of this chapter.

The regress( ) method returns the values of a and b, a string representation of the regression

equation, and the correlation coefficient, contained within a RegData object. RegData is

shown here:

// This class holds the regression analysis data.

class RegData {

public double a, b;

public double cor;

public String equation;

public RegData(double i, double j, double k, String str) {

a = i;

b = j;

cor = k;

equation = str;

}

}

The Entire Stats Class
All of the statistical methods can be assembled into a class called Stats, as shown next. The

same file also makes a convenient place to store the RegData and NoModeException classes.

import java.util.*;

import java.text.*;

// This class holds the regression analysis data.

class RegData {

public double a, b;

public double cor;

public String equation;

public RegData(double i, double j, double k, String str) {

a = i;

b = j;

cor = k;

2 4 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



equation = str;

}

}

// This is the exception thrown by mode()

class NoModeException extends Exception {

public String toString() {

return "Set contains no mode.";

}

}

// A general-purpose statistics class.

public class Stats {

// Return the average of a set of values.

public static double mean(double[] vals) {

double avg = 0.0;

for(int i=0; i < vals.length; i++)

avg += vals[i];

avg /= vals.length;

return avg;

}

// Return the median of a set of values.

public static double median(double[] vals) {

double temp[] = new double[vals.length];

System.arraycopy(vals, 0, temp, 0, vals.length);

Arrays.sort(temp); // sort the data

// Return the middle value.

if((vals.length)%2==0) {

// If even number of values, find average.

return (temp[temp.length/2] +

temp[(temp.length/2)-1]) /2;

} else return

temp[temp.length/2];

}

/* Returns the mode of a set of values.

A NoModeException is thrown if no value

occurs more frequently than any other.

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 4 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



If two or more values occur with the

same frequency, the first value is

returned. */

public static double mode(double[] vals)

throws NoModeException

{

double m, modeVal = 0.0;

int count, oldcount = 0;

for(int i=0; i < vals.length; i++) {

m = vals[i];

count = 0;

// Count how many times each value occurs.

for(int j=i+1; j < vals.length; j++)

if(m == vals[j]) count++;

/* If this value occurs more frequently than

the previous candidate, save it. */

if(count > oldcount) {

modeVal = m;

oldcount = count;

}

}

if(oldcount == 0)

throw new NoModeException();

else

return modeVal;

}

// Return the standard deviation of a set of values.

public static double stdDev(double[] vals) {

double std = 0.0;

double avg = mean(vals);

for(int i=0; i < vals.length; i++)

std += (vals[i]-avg) * (vals[i]-avg);

std /= vals.length;

std = Math.sqrt(std);

return std;

}

2 4 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



/* Compute the regression equation and coefficient

of correlation for a set of values.  The

values represent the Y coordinate.  The X

coordinate is time (i.e., ascending increments

of 1). */

public static RegData regress(double[] vals) {

double a, b, yAvg, xAvg, temp, temp2, cor;

double vals2[] = new double[vals.length];

// Create number format with 2 decimal digits.

NumberFormat nf = NumberFormat.getInstance();

nf.setMaximumFractionDigits(2);

// Find mean of Y values.

yAvg = mean(vals);

// Find mean of X component.

xAvg = 0.0;

for(int i=0; i < vals.length; i++) xAvg += i;

xAvg /= vals.length;

// Find b.

temp = temp2 = 0.0;

for(int i=0; i < vals.length; i++) {

temp += (vals[i]-yAvg) * (i-xAvg);

temp2 += (i-xAvg) * (i-xAvg);

}

b = temp/temp2;

// Find a.

a = yAvg - (b*xAvg);

// Compute the coefficient of correlation.

for(int i=0; i < vals.length; i++) vals2[i] = i+1;

cor = temp/vals.length;

cor /= stdDev(vals) * stdDev(vals2);

return new RegData(a, b, cor, "Y = " +

nf.format(a) +  " + " +

nf.format(b) + " * X");

}

}

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 4 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Graphing Data
Although statistics are useful by themselves, they don’t always give a complete feel for the

data. In many cases, it is helpful to see the data displayed in some form of graph. Depicting

data in a visual form enables one to spot both correlations and anomalies that might not be

immediately apparent simply by reviewing the statistics. A graph also shows at a glance how

the data is actually distributed and its variability. Because of the importance of graphs to

statistics, three graphing methods are developed here.

In addition to displaying data in a visually useful form, the graphing methods provide a

secondary benefit: they illustrate several techniques related to Java’s AWT and event handling.

As you know, the AWT is part of the core Java class library. It provides support for a graphically

oriented, window-based environment—that is, a graphical user interface (GUI). A GUI-based

application interacts with the user by handling events, which include everything from keystrokes,

to menu selections, to repaint and resizing requests. In the process of developing the graphing

methods, we will be dealing with several side issues relating to the GUI environment. For

example, a graph must be dynamically scalable because a user might resize the window that

contains it.

This chapter develops three types of graphs. The first is a bar graph, the second is a scatter

graph, and the third is a scatter graph that includes the regression line. As you will see, much

of the code, such as that which scales output, is common to all three.

Scaling Data
To make a plotting method handle arbitrarily sized units, it is necessary to scale the data

appropriately. It is also necessary to adjust the scale based on the size of the window in which

it is displayed. Furthermore, the data must be scaled dynamically each time the window is

repainted because the user might have resized the window.

The process of scaling the data involves finding the ratio between the range of the data

and the physical dimensions of the window. Once this ratio is known, data can be plotted

by multiplying each element by the ratio, the result of which yields a coordinate within the

window. For example, the formula for scaling the Y coordinate is

Y' = Y * (width-of-window / (max – min) )

where Y’ is the scaled value that describes a location within the window.

Although the preceding formula is quite simple, there are complications that occur that

relate to the GUI-based environment. For example, the width of the window must be obtained

each time the graph is redisplayed because the size of the window might change. Furthermore,

the width of the window’s border must be subtracted from the overall width of the window.

Also, the height and width of the digits used to display the range need to be obtained and

accounted for. Thus, the process of scaling data for output requires several steps, but none

are particularly complicated.

2 5 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 5 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

The Graphs Class
The graphing methods are contained within the Graphs class. The Graphs class extends

Frame. Thus, graphs are contained within top-level frame windows. This makes the window

resizable and somewhat independent from the application that uses one. For example, you can

display a graph and then minimize its window without minimizing the rest of the application.

The Graphs class is shown here. Each portion of Graphs is examined in detail by the

following sections.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.util.*;

// A general-purpose graph class.

public class Graphs extends Frame {

// Constants for type of graph.

public final static int BAR = 0;

public final static int SCATTER = 1;

public final static int REGPLOT = 2;

private int graphStyle;

/* These specify the amount of space to

leave between data and borders. */

private final int leftGap = 2;

private final int topGap = 2;

private final int bottomGap = 2;

private int rightGap; // this value is computed

// These hold the min and max values of the data.

private double min, max;

// Refers to the data.

private double[] data;

// Colors used by the graph.

Color gridColor = new Color(0, 150, 150);

Color dataColor = new Color(0, 0, 0);

// Various values used to scale and display data.

private int hGap;   // space between data points

private int spread; // distance between min and max data

private double scale; // scaling factor

private int baseline; // vertical coordinate of baseline

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Location of data area within the window.

private int top, bottom, left, right;

public Graphs(double[] vals, int style) {

// Handle window-closing events.

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

setVisible(false);

dispose();

}

});

// Handle resize events.

addComponentListener(new ComponentAdapter() {

public void componentResized(ComponentEvent ce) {

repaint();

}

});

graphStyle = style;

data = vals;

// Sort the data to find min and max values.

double t[] = new double[vals.length];

System.arraycopy(vals, 0, t, 0, vals.length);

Arrays.sort(t);

min = t[0];

max = t[t.length-1];

setSize(new Dimension(200, 120));

switch(graphStyle) {

case BAR:

setTitle("Bar Graph");

setLocation(25, 250);

break;

case SCATTER:

setTitle("Scatter Graph");

setLocation(250, 250);

break;

case REGPLOT:

setTitle("Regression Plot");

setLocation(475, 250);

break;

2 5 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

setVisible(true);

}

public void paint(Graphics g) {

Dimension winSize = getSize(); // size of window

Insets ins = getInsets(); // size of borders

// Get the size of the currently selected font.

FontMetrics fm = g.getFontMetrics();

// Compute right gap.

rightGap = fm.stringWidth("" + data.length);

// Compute the total insets for the data region.

left = ins.left + leftGap + fm.charWidth('0');

top = ins.top + topGap + fm.getAscent();

bottom = ins.bottom + bottomGap + fm.getAscent();

right = ins.right + rightGap;

/* If minimum value positive, then use 0

as the starting point for the graph.

If maximum value is negative, use 0. */

if(min > 0) min = 0;

if(max < 0) max = 0;

/* Compute the distance between the minimum

and maximum values. */

spread = (int) (max - min);

// Compute the scaling factor.

scale = (double) (winSize.height - bottom - top) / spread;

// Find where the baseline goes.

baseline = (int) (winSize.height - bottom + min * scale);

// Compute the spacing between data.

hGap = (winSize.width - left - right) / (data.length-1);

// Set the grid color.

g.setColor(gridColor);

// Draw the baseline.

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 5 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 5 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

g.drawLine(left, baseline,

left + (data.length-1) * hGap, baseline);

// Draw the Y axis.

if(graphStyle != BAR)

g.drawLine(left, winSize.height-bottom, left, top);

// Display the min, max, and 0 values.

g.drawString("0", ins.left, baseline+fm.getAscent()/2);

if(max != 0)

g.drawString("" + max, ins.left, baseline -

(int) (max*scale) - 4);

if(min != 0)

g.drawString("" + min, ins.left, baseline -

(int) (min*scale)+fm.getAscent());

// Display number of values.

g.drawString("" + data.length,

(data.length-1) * (hGap) + left,

baseline + fm.getAscent());

// Set the data color.

g.setColor(dataColor);

// Display the data.

switch(graphStyle) {

case BAR:

bargraph(g);

break;

case SCATTER:

scatter(g);

break;

case REGPLOT:

regplot(g);

break;

}

}

// Display a bar graph.

private void bargraph(Graphics g) {

int v;

for(int i=0; i < data.length; i++) {

v = (int) (data[i] * scale);

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



g.drawLine(i*hGap+left, baseline,

i*hGap+left, baseline - v);

}

}

// Display a scatter graph.

private void scatter(Graphics g) {

int v;

for(int i=0; i < data.length; i++) {

v = (int) (data[i] * scale);

g.drawRect(i*hGap+left, baseline - v, 1, 1);

}

}

// Display a scatter graph with regression line.

private void regplot(Graphics g) {

int v;

RegData rd = Stats.regress(data);

for(int i=0; i < data.length; i++) {

v = (int) (data[i] * scale);

g.drawRect(i*hGap+left, baseline - v, 1, 1);

}

// Draw the regression line.

g.drawLine(left, baseline - (int) ((rd.a)*scale),

hGap*(data.length-1)+left+1,

baseline - (int) ((rd.a+(rd.b*(data.length-1)))*scale));

}

}

The Graphs final and Instance Variables
Graphs begins by declaring the following variables:

// Constants for type of graph.

public final static int BAR = 0;

public final static int SCATTER = 1;

public final static int REGPLOT = 2;

private int graphStyle;

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 5 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The first three final static variables are called BAR, SCATTER, and REGPLOT. These

values are used to specify which type of graph you want to display. The style of the graph

is stored in graphStyle.

Next, variables that hold the width of the gap between the window borders and the start

of the area in which data is displayed are declared, as shown here:

/* These specify the amount of space to

leave between data and borders. */

private final int leftGap = 2;

private final int topGap = 2;

private final int bottomGap = 2;

private int rightGap; // this value is computed

Three are final, but rightGap is not because its value depends on the current character width

and the number of data items being displayed.

Next the following variables are declared:

// These hold the min and max values of the data.

private double min, max;

// Refers to the data.

private double[] data;

The min and max variables hold the minimum and maximum values of the data. The array

holding the data is referred to by data.

The colors used by the graph are stored in gridColor and dataColor, shown next:

// Colors used by the graph.

Color gridColor = new Color(0, 150, 150);

Color dataColor = new Color(0, 0, 0);

The grid color is light green, and the data color is black, but you can change these colors

if you want.

Next, variables that hold various scaling-related values are declared, as shown here:

// Various values used to scale and display data.

private int hGap;   // space between data points

private int spread; // distance between min and max data

private double scale; // scaling factor

private int baseline; // vertical coordinate of baseline

The distance between data points along the X-axis is stored in hGap. The number of units

between the minimum and maximum values in the data is stored in spread. The scaling factor

is held by scale. The vertical location of the baseline (i.e., the X axis) is stored in baseline.

Finally, top, bottom, left, and right are declared:

// Location of data area within the window.

private int top, bottom, left, right;

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

2 5 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 5 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

These variables will define the data area within the window.

The Graphs Constructor
The Graphs constructor takes two arguments. The first specifies a reference to the data being

displayed. The second is a value that indicates the style of the graph. This value must be

Graph.BAR, Graph.SCATTER, or Graph.REGPLOT.

Graphs( ) begins by adding an event listener for the window-closing event, as shown here:

// Handle window-closing events.

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

setVisible(false);

dispose();

}

});

The listener is added by calling addWindowListener( ), passing a WindowAdapter

object that overrides the windowClosing( ) event handler. Recall that an adapter class

provides an empty implementation for all the methods in its corresponding event listener

interface. In this specific case, WindowAdapter implements the WindowListener interface.

Because empty implementations for all of the methods specified by WindowListener are

provided by WindowAdapter, we need override only the one in which we are interested,

which is windowClosing( ).

When the window is closed, the graph window is removed from view by calling

setVisible(false) and then removed from the system by calling dispose( ). These are

methods defined by the AWT for Frame windows.

Next, an event listener is added that handles window-resize events. This is done by

calling addComponentListener( ), passing a ComponentAdapter object that overrides

the componentResized( ) event handler, as shown here:

// Handle resize events.

addComponentListener(new ComponentAdapter() {

public void componentResized(ComponentEvent ce) {

repaint();

}

});

When the window is resized, componetResized( ) calls repaint( ), which causes the

paint( ) method to be called. As you will see, paint( ) dynamically scales the output based on

the current window size. Thus, when the window is resized, paint( ) simply redisplays the

graph using the new dimensions.

Next, graphStyle is assigned the graph style, and data is assigned a reference to the array

of data. Then, a temporary copy of the data is created and sorted. From this sorted array, the

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



minimum and maximum values are obtained. The lines of code that accomplish these actions

are shown here:

graphStyle = style;

data = vals;

// Sort the data to find min and max values.

double t[] = new double[vals.length];

System.arraycopy(vals, 0, t, 0, vals.length);

Arrays.sort(t);

min = t[0];

max = t[t.length-1];

The Graphs constructor ends with these lines of code:

setSize(new Dimension(200, 120));

switch(graphStyle) {

case BAR:

setTitle("Bar Graph");

setLocation(25, 250);

break;

case SCATTER:

setTitle("Scatter Graph");

setLocation(250, 250);

break;

case REGPLOT:

setTitle("Regression Plot");

setLocation(475, 250);

break;

}

setVisible(true);

The initial size of the graph window is set to 200 by 120 by calling setSize( ). Then, based

on graphStyle, the title bar is assigned an appropriate title by calling setTitle( ), and a screen

location is set by calling setLocation( ). Finally, the graph window is displayed by calling

setVisible(true). This causes paint( ) to be called to display the window.

The paint( ) method
Much of the work related to displaying a graph takes place in paint( ). It performs the

following main activities:

� Determines the size of the window and the size of the border

2 5 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 5 9

� Obtains the size of the currently selected text font

� Computes the size of the data area within the window, which is the size of

the window less the regions occupied by the window border and insets

� Computes the scaling factor

� Computes the Y coordinate of the baseline, which is the X axis

� Determines the spacing between data points

� Draws the baseline and the Y axis

� Displays the maximum and minimum X and Y values

� Calls the appropriate method to actually plot the data

The comments in paint( ) describe the action in detail, and much is self-explanatory.

However, because of its importance, we will walk through its operation line by line.

The paint( ) method begins with these two declarations:

Dimension winSize = getSize(); // size of window

Insets ins = getInsets(); // size of borders

A Frame window consists of two general parts: the border, including the title bar and

menu bar (if one exists), and the area in which data can be displayed. The size of a window

is obtained by calling getSize( ). It returns the overall dimensions of the window in the form

of a Dimension object. A reference to this object is stored in winSize. Dimension has two

fields: width and height. Thus, the overall size of the window is found in winSize.width

and winSize.height.

To find that part of the window in which data can be displayed, you must subtract the

portion of the window that is allocated to the border. To do this, you must call getInsets( ).

It returns the size of the border in an Insets object, which contains these fields: left, right,

top, and bottom. A reference to this object is stored in ins. Recall that the coordinates of the

upper-left corner of a window are 0, 0. Thus, the location of the top-left corner of the data

area is ins.left, ins.top, and the location of the bottom-right corner is winSize.width–right,

winSize.height–bottom.

Next, paint( ) obtains the metrics for the currently selected font, as shown here:

// Get the size of the currently selected font.

FontMetrics fm = g.getFontMetrics();

The information in fm will be used to compute the height and width of the characters used to

display the range of the data.

Although the insets determine the maximum region in which data can be displayed, not

all is necessarily usable for aesthetic reasons. Often it is more pleasing to leave a small gap

between the data and the border. To accomplish this, the data region is further reduced by

the values leftGap, topGap, bottomGap, and rightGap. The first three of these contain the

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



value 2, but the value of rightGap is computed based on the width of the string that contains

the number of elements in the set, as shown here:

// Compute right gap.

rightGap = fm.stringWidth("" + data.length);

Because the string that displays the number of elements is on the far-right side of the

baseline, room must be left for it. This is why the font metrics must be obtained by calling

getFontMetrics( ). Using this object, the method stringWidth( ) returns the width of the

string, which is assigned to rightGap.

Next, the total inset for each side is computed by using all the previously obtained values,

and the results are stored in left, top, right, and bottom, as shown here:

// Compute the total insets for the data region.

left = ins.left + leftGap + fm.charWidth('0');

top = ins.top + topGap + fm.getAscent();

bottom = ins.bottom + bottomGap + fm.getAscent();

right = ins.right + rightGap;

Notice that room is left for displaying the range of the data.

The next few lines of code compute the scaling factor:

/* If minimum value positive, then use 0

as the starting point for the graph.

If maximum value is negative, use 0. */

if(min > 0) min = 0;

if(max < 0) max = 0;

/* Compute the distance between the minimum

and maximum values. */

spread = (int) (max - min);

// Compute the scaling factor.

scale = (double) (winSize.height - bottom - top) / spread;

The process begins first by normalizing the values in min and max. All graphs will set the

origin at 0, 0. So, if the minimum value is greater than 0, min is set to 0. If the maximum

value is less than 0, max is set to zero. Next, the spread between min and max is computed.

This value is then used to compute the scaling factor, which is stored in scale.

After computing the scaling factor, the location of the baseline can be found by scaling the

value of min, as shown here:

// Find where the baseline goes.

baseline = (int) (winSize.height - bottom + min * scale);

If min is zero, the baseline is on the lower edge of the window. Otherwise, it is somewhere

in the middle, or if all values are negative, the baseline is at the top.

2 6 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The spacing between data is determined by dividing the width of data area by the number

of elements, as shown here:

// Compute the spacing between data.

hGap = (winSize.width - left - right) / (data.length-1);

Next, the current color is set to gridColor, and the X and Y axis and ranges are displayed.

The code that accomplishes these tasks is shown here:

// Set the grid color.

g.setColor(gridColor);

// Draw the baseline.

g.drawLine(left, baseline,

left + (data.length-1) * hGap, baseline);

// Draw the Y axis.

if(graphStyle != BAR)

g.drawLine(left, winSize.height-bottom, left, top);

// Display the min, max, and 0 values.

g.drawString("0", ins.left, baseline+fm.getAscent()/2);

if(max != 0)

g.drawString("" + max, ins.left, baseline -

(int) (max*scale) - 4);

if(min != 0)

g.drawString("" + min, ins.left, baseline -

(int) (min*scale)+fm.getAscent());

// Display number of values.

g.drawString("" + data.length,

(data.length-1) * (hGap) + left,

baseline + fm.getAscent());

Notice that the Y axis is not displayed for a bar graph. Also, notice that the maximum

range is displayed only if it is not zero, and the minimum range is displayed only if it is not

zero. Also notice that the height of a character affects the precise location at which the range

of the data is displayed.

Finally, the code shown next sets the color to dataColor and calls the appropriate

graphing method to actually display the data:

// Set the data color.

g.setColor(dataColor);

// Display the data.

switch(graphStyle) {

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 6 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



case BAR:

bargraph(g);

break;

case SCATTER:

scatter(g);

break;

case REGPLOT:

regplot(g);

break;

}

The bargraph( ) Method
The bargraph( ) method scales each element in the array referred to by data and then

displays a line whose length is proportional to that data. The line is drawn from the baseline.

The bargraph( ) method is shown here:

// Display a bar graph.

private void bargraph(Graphics g) {

int v;

for(int i=0; i < data.length; i++) {

v = (int) (data[i] * scale);

g.drawLine(i*hGap+left, baseline,

i*hGap+left, baseline - v);

}

}

Because so much of the work has already been done by paint( ), there is nothing for

bargraph( ) to do other than scale each element using the scaling factor and then draw

the line. The line begins at the baseline, which is the X axis. The end point is computed by

subtracting the scaled value from the baseline. Remember, the upper-left corner of a window

is 0, 0. Thus, smaller Y values are located higher in the window than are larger Y values.

Therefore, the value in v is subtracted from baseline. The spacing between bars is specified

by hGap. The X location of each bar is found by multiplying the index of the element by

the gap and then adding the offset from the left edge (found in left).

The scatter( ) Method
The scatter( ) method works much like bargraph( ) except that it plots points rather than

lines. It is shown here:

// Display a scatter graph.

private void scatter(Graphics g) {

2 6 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:53 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



int v;

for(int i=0; i < data.length; i++) {

v = (int) (data[i] * scale);

g.drawRect(i*hGap+left, baseline - v, 1, 1);

}

}

The scatter( ) method scales each element in the array referred to by data and then displays

a point at the Y position that is proportional to that data.

The regplot( ) Method
Like scatter( ), the regplot( ) method, shown next, plots a scatter graph. The difference is

that it then draws the regression line using the regression data by calling regress( ):

// Display a scatter graph with regression line.

private void regplot(Graphics g) {

int v;

RegData rd = Stats.regress(data);

for(int i=0; i < data.length; i++) {

v = (int) (data[i] * scale);

g.drawRect(i*hGap+left, baseline - v, 1, 1);

}

// Draw the regression line.

g.drawLine(left, baseline - (int) ((rd.a)*scale),

hGap*(data.length-1)+left+1,

baseline - (int) ((rd.a+(rd.b*(data.length-1)))*scale));

}

Notice how the regression line is drawn. In the call to drawLine( ), the end points of the line

are computed based on the value of rd.a and rd.b, which correspond to the Y intercept (a)

and slope of the line (b) in the regression equation.

A Statistics Application
With the Stats and Graphs classes, it is possible to build a simple, yet effective graphics

application. The main window of the application is created by the StatsWin class, shown here:

import java.awt.*;

import java.awt.event.*;

import java.util.*;

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 6 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 6 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

import java.text.*;

// Process and display statistical data.

public class StatsWin extends Frame

implements ItemListener, ActionListener  {

NumberFormat nf = NumberFormat.getInstance();

TextArea statsTA;

Checkbox bar = new Checkbox("Bar Graph");

Checkbox scatter = new Checkbox("Scatter Graph");

Checkbox regplot = new Checkbox("Regression Line Plot");

Checkbox datawin = new Checkbox("Show Data");

double[] data;

Graphs bg;

Graphs sg;

Graphs rp;

DataWin da;

RegData rd;

public StatsWin(double vals[]) {

data = vals; // save reference to data

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

shutdown();

}

});

// Create the File menu.

createMenu();

// Change to flow layout, centering components.

setLayout(new FlowLayout(FlowLayout.CENTER));

setSize(new Dimension(300, 240));

setTitle("Statistical Data");

rd = Stats.regress(data);

// Set the number format to 2 decimal digits.

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



nf.setMaximumFractionDigits(2);

// Construct output.

String mstr;

try {

// Obtain mode, if there is one.

mstr = nf.format(Stats.mode(data));

} catch(NoModeException exc) {

mstr = exc.toString();

}

String str = "Mean: " +

nf.format(Stats.mean(data)) + "\n" +

"Median: " +

nf.format(Stats.median(data)) + "\n" +

"Mode: " + mstr + "\n" +

"Standard Deviation: " +

nf.format(Stats.stdDev(data)) + "\n\n" +

"Regression equation: " + rd.equation +

"\nCorrelation coefficient: " +

nf.format(rd.cor);

// Put output in text area.

statsTA = new TextArea(str, 6, 38, TextArea.SCROLLBARS_NONE);

statsTA.setEditable(false);

// Add components to window.

add(statsTA);

add(bar);

add(scatter);

add(regplot);

add(datawin);

// Add component listeners.

bar.addItemListener(this);

scatter.addItemListener(this);

regplot.addItemListener(this);

datawin.addItemListener(this);

setVisible(true);

}

// Handle the Close menu option.

public void actionPerformed(ActionEvent ae) {

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 6 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



String arg = (String)ae.getActionCommand();

if(arg == "Close") {

shutdown();

}

}

// User changed a check box.

public void itemStateChanged(ItemEvent ie) {

if(bar.getState()) {

if(bg == null) {

bg = new Graphs(data, Graphs.BAR);

bg.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

bar.setState(false);

bg = null;

}

});

}

}

else {

if(bg != null) {

bg.dispose();

bg = null;

}

}

if(scatter.getState()) {

if(sg == null) {

sg = new Graphs(data, Graphs.SCATTER);

sg.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

scatter.setState(false);

sg = null;

}

});

}

}

else {

if(sg != null) {

sg.dispose();

sg = null;

}

}

2 6 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



if(regplot.getState()) {

if(rp == null) {

rp = new Graphs(data, Graphs.REGPLOT);

rp.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

regplot.setState(false);

rp = null;

}

});

}

}

else {

if(rp != null) {

rp.dispose();

rp = null;

}

}

if(datawin.getState()) {

if(da == null) {

da = new DataWin(data);

da.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

datawin.setState(false);

da = null;

}

});

}

}

else {

if(da != null) {

da.dispose();

da = null;

}

}

}

// Create the File menu.

private void createMenu()

{

MenuBar mbar = new MenuBar();

setMenuBar(mbar);

Menu file = new Menu("File");

MenuItem close = new MenuItem("Close");

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 6 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



file.add(close);

mbar.add(file);

close.addActionListener(this);

}

// Shut down the windows.

private void shutdown() {

if(bg != null) bg.dispose();

if(sg != null) sg.dispose();

if(rp != null) rp.dispose();

if(da != null) da.dispose();

setVisible(false);

dispose();

}

}

The StatsWin class extends Frame to create a top-level window in which statistical

information is displayed. It also includes check boxes that allow the user to display the data

in the various graphic formats and to display a window that shows the data. StatsWin implements

the ItemListener and ActionListener interfaces.

StatsWin begins by obtaining a NumberFormat object. NumberFormat is a class that

helps format numeric data. StatsWin uses it to specify the number of decimal digits that will

be displayed for the various statistics.

StatsWin continues by declaring several instance variables that hold references to the

various GUI objects used by the class. This includes a text area, four check boxes, and three

Graphs objects. A reference to a DataWin object is stored in da. DataWin is a window

class that displays the data as numerical values and is described later. A reference to the data

being analyzed is stored in data, and a reference to the regression data is stored in rd.

The methods in StatsWin are described in turn.

The StatsWin Constructor
StatsWin( ) must be passed a reference to the data being analyzed. It then constructs an

object that performs statistical analysis on that data. Most of the code in the constructor

is straightforward, but we will briefly walk through its operation.

StatsWin( ) begins by saving a reference to the data. It then adds a window listener that

handles window-closing events. When such an event occurs, the shutdown( ) method is

called, which removes all windows opened by StatsWin.

Next, StatsWin( ) creates the File menu by calling CreateMenu( ). The file menu

contains only one entry: Close. When Close is selected, the application is terminated.

StatsWin( ) then changes the layout manager to centering, flow layout. This is necessary

because Frame uses border layout by default.

Next, the size and title of the window are set and the regression data is obtained. Then, the

number format that will be used to display the statistics is set to two decimal places using this

line of code:

2 6 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



nf.setMaximumFractionDigits(2);

As mentioned earlier, nf refers to a NumberFormat object. This is an object that can be

used to describe the display format of numeric values. The setMaximumFractionDigits( )

method sets the maximum number of digits displayed after the decimal point. StatsWin uses

nf to format all numeric output. If you want to see more decimal places, simply change the

value in the call to setMaximumFractionDigits( ).

The next few lines of code create a string that contains the results of the various statistics

for the data:

// Construct output.

String mstr;

try {

// Obtain mode, if there is one.

mstr = nf.format(Stats.mode(data));

} catch(NoModeException exc) {

mstr = exc.toString();

}

String str = "Mean: " +

nf.format(Stats.mean(data)) + "\n" +

"Median: " +

nf.format(Stats.median(data)) + "\n" +

"Mode: " + mstr + "\n" +

"Standard Deviation: " +

nf.format(Stats.stdDev(data)) + "\n\n" +

"Regression equation: " + rd.equation +

"\nCorrelation coefficient: " +

nf.format(rd.cor);

Notice how the string for the mode is obtained. Recall that mode( ) throws an exception

when the sample has no mode. Thus, mstr will contain either a string containing the mode

or a message signifying that no mode exists.

Once the output string, str, has been fully constructed, it is then put into a TextArea

object referred to by statsTA. This object is then set to read-only by calling setEditable(false).

Thus, the text area displays the data, but does not allow it to be altered.

The various GUI objects are then added to the window along with their component listeners.

Because the text area is read-only, it does not require a listener. Finally, the window is made

visible.

The itemStateChanged( ) Handler
Much of the action in StatsWin occurs in itemStateChanged( ). This method handles

changes to the four check boxes. Each time the user checks a box, the window associated

with that box is displayed. Each time the user clears a box, the window associated with that

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 6 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



box is removed. To understand how this process works, we will examine the code sequence

that handles changes to the Bar Graph check box. It is shown here:

if(bar.getState()) {

if(bg == null) {

bg = new Graphs(data, Graphs.BAR);

bg.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

bar.setState(false);

bg = null;

}

});

}

}

else {

if(bg != null) {

bg.dispose();

bg = null;

}

}

The state of bar, which holds a reference to the Bar Graph check box, is obtained by

calling getState( ). If the return value is true, then the box is checked; otherwise it is cleared.

If the box is checked and if bg is null, it means that no bar graph window is currently being

displayed. In this case, bg is assigned a reference to a new Graphs object that displays the

bar graph. Otherwise, if bg is not null, then a bar graph window is already being displayed

and no other action takes place.

If a new bar graph window is created, a window listener is added that monitors the bar graph

window. This listener handles the window-closing event generated by the bar graph window.

This means that a StatsWin object will receive a notification when the bar graph window is

closed. When a close notification is received, the state of the Bar Graph check box is cleared

and bg is set to null.

If the state of bar is cleared when an item change event occurs, and if bg is not null, the

window holding the bar graph is removed by calling dispose( ) and bg is set to null. This

same basic mechanism is used by all four check boxes.

The actionPerformed( ) Method
The actionPerformed( ) method handles the selection of the Close menu item from the File

menu. It simply calls shutdown( ) to terminate the program.

The shutdown( ) Method
When a StatsWin window is closed, the shutdown( ) method is called. It removes all open

windows created by a StatsWin object, including the main window and any graph or data

2 7 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



windows. Therefore, even though the graphs are displayed in top-level windows, they are

removed when the main application is terminated.

The createMenu( ) Method
The createMenu( ) method constructs the File menu. It begins by creating a MenuBar

object called mbar. It then creates a Menu object called file to which a MenuItem object

called close is added. Then, the file is added to mbar. Finally, the StatsWin object is added

as an action listener for the menu. Thus, the action event generated when the user selects the

Close menu item is handled by the actionPerformed( ) method described earlier.

The DataWin Class
StatsWin uses an object of type DataWin to display the raw numeric data that is being

analyzed. The DataWin class is shown here:

import java.awt.event.*;

import java.awt.*;

// Display an array of numeric data.

class DataWin extends Frame {

TextArea dataTA;

DataWin(double[] data) {

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

setVisible(false);

dispose();

}

});

dataTA = new TextArea(10, 10);

dataTA.setEditable(false);

for(int i=0; i < data.length; i++)

dataTA.append(data[i]+"\n");

setSize(new Dimension(100, 140));

setLocation(320, 100);

setTitle("Data");

setResizable(false);

add(dataTA);

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 7 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



setVisible(true);

}

}

DataWin extends Frame and is also a top-level window. The DataWin constructor is

passed a reference to the array of data to display. It then constructs a TextArea to display the

data. The text area is set to read-only and is not resizable. However, it can be minimized.

Putting Together the Pieces
The following program demonstrates Stats and Graphs:

// Demonstrate the Stats and Graphs.

import java.io.*;

import java.awt.*;

class DemoStat {

public static void main(String args[])

throws IOException

{

double nums[] = { 10, 10, 11, 9, 8, 8, 9,

10, 10, 13, 11, 11, 11,

11, 12, 13, 14, 16, 17,

15, 15, 16, 14, 16 };

new StatsWin(nums);

}

}

To compile the program, use this command line:

javac DemoStat.java DataWin.java StatsWin.java Stats.java Graphs.java

To run the program, type

javaw DemoStat

Notice that javaw (rather than java) is used to run the application. javaw runs the application

without requiring a console window. Using javaw ensures that the application will shut down

correctly when the main window is closed. For Java 2, version 1.4 and later, you could also

use java, but for earlier versions of Java, such as version 1.3, javaw is needed. Figures 8-2

through 8-4 show the statistic classes in action.

One thing that makes this application interesting is the use of resizable, top-level windows

to hold the graphs. This technique enables the graphs to be resized dynamically by the user,

with the scale of the data automatically adjusted. Also, a graph window can be minimized.

This allows it to be removed from the screen but not entirely removed from the system.

2 7 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 7 3

Figure 8-2 The main StatsWin window

Figure 8-3 The graph windows

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:55 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 7 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

Creating a Simple Statistical Applet
Although the previous section created a stand-alone application using Stats and Graphs,

these classes are not limited to this use. They can be easily used by both applets and servlets.

To see how, consider the following simple applet. It uses Stats and Graphs to display statistical

information about data that it is passed.

// A demonstration applet that uses Stats and Graphs.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.util.*;

/*

<applet code="StatApplet" width=120 height=50>

<param name=data value="1.2, 3.6, 5.7, 4.4, 7.1, 4.4,

6.89, 8.9, 10.3, 9.45">

</applet>

*/

Figure 8-4 The effects of resizing a graph window

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:55 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



public class StatApplet extends Applet implements ActionListener {

StatsWin sw;

Button show;

ArrayList al = new ArrayList();

public void init() {

StringTokenizer st = new

StringTokenizer(getParameter("data"), ", \n\r");

String v;

// Get the values from the HTML.

while(st.hasMoreTokens()) {

v = st.nextToken();

al.add(v);

}

show = new Button("Display Statistics");

add(show);

show.addActionListener(this);

}

public void actionPerformed(ActionEvent ae) {

if(sw == null) {

double nums[] = new double[al.size()];

try {

for(int i=0; i<al.size(); i++)

nums[i] = Double.parseDouble((String)al.get(i));

} catch(NumberFormatException exc) {

System.out.println("Error reading data.");

return;

}

sw = new StatsWin(nums);

show.setEnabled(false);

sw.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

sw = null;

show.setEnabled(true);

}

});

}

}

}

C h a p t e r 8 : S t a t i s t i c s , G r a p h i n g , a n d J a v a 2 7 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:55 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Notice that the data is passed to StatApplet through an HTML parameter called data.

This string contains a comma-separated list of values. StatApplet uses a StringTokenizer

to retrieve each individual value in its String form. As each value is read, it is added to an

ArrayList object referred to by al. ArrayList is a collection class that supports a dynamic

array that grows as needed.

When the user presses the Display Statistics button, the actionPerformed( ) method is

executed. Because a StatsWin object requires an array of type double, not an ArrayList,

as a parameter, the strings in al must be converted into double values and copied into an

array. After this has been done, a StatsWin object is created and the statistics are displayed.

Sample output as produced by the Applet Viewer is shown in Figure 8-5. An applet like

this would make a great addition to many Web sites.

Some Things to Try
Here are some ideas that you might want to try. As explained, the graphing methods and the

regress( ) method operate on only one set of data that corresponds to the Y values. The X

values are time. You might want to create a second set of these methods that takes two arrays

as arguments, with the second array specifying the X values.

You might find it interesting to allow the user to rotate the axes of the graphs, perhaps in

real time. You might want to allow the user to specify the width of the bars in the bar graph

or the shapes of the points in the scatter graph.

Finally, you might want to experiment with embedding a graph window within the

StatsWin window instead of making them stand-alone windows. In this approach, you

could use the check boxes to determine which type of graph was displayed within the

dedicated graph window.

2 7 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 8

Figure 8-5 Sample output from the StatApplet applet

P:\010Comp\ApDev\971-3\ch08.vp
Tuesday, July 08, 2003 9:06:55 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



CHAPTER

9
Financial Applets

and Servlets
by Herb Schildt

277

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:24 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Despite all the large, sophisticated applications, such as word processors, databases,

and accounting packages that dominate much of the computing landscape, there

has remained a class of programs that are both popular and small. These perform

various financial calculations, such as the regular payments on a loan, the future value of an

investment, or the remaining balance on a loan. None of these calculations are very complicated

or require much code, yet they yield information that is quite useful.

As most readers will know, Java was initially designed to support the creation of small,

portable programs. Originally, these programs took the form of applets, but a few years

later servlets were added. (Recall that applets run on the local machine, inside the browser,

and servlets execute on the server.) Because of their small size, many of the common financial

calculations are right-sized for applets and servlets. Furthermore, including a financial

applet/servlet in a Web page is an amenity that many users will appreciate. A user will

return again and again to a page that offers the calculation that he or she desires.

This chapter develops a number of applets that perform the financial calculations

shown here:

� Regular payments on a loan

� Remaining balance on a loan

� Future value of an investment

� Initial investment needed to attain a desired future value

� Annuity from an investment

� Investment necessary for a desired annuity

These applets can be used as is or tweaked to fit your specific need. The chapter ends by

showing how to convert the financial applets into servlets.

Finding the Payments for a Loan
Perhaps the most popular financial calculation is the one that computes the regular payments

on a loan, such as a car or house loan. The payments on a loan are found by using the

following formula:

Payment = (intRate * (principal / payPerYear)) /

(1 – ((intRate / payPerYear) + 1)
– payPerYear * numYears

)

where intRate specifies the interest rate, principal contains the starting balance, payPerYear

specifies the number of payments per year, and numYears specifies the length of the loan

in years.

The following applet called RegPay uses the preceding formula to compute the payments

on a loan given the information entered by the user. Notice that the RegPay class extends

Applet and implements ActionListener.

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

2 7 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:24 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 2 7 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

// A simple loan calculator applet.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.text.*;

/*

<applet code="RegPay" width=280 height=200>

</applet>

*/

public class RegPay extends Applet

implements ActionListener {

TextField amountText, paymentText, periodText,

rateText;

Button doIt;

double principal; // original princial

double intRate;   // interest rate

double numYears;  // length of loan in years

/* Number of payments per year.  You could

allow this value to be set by the user. */

final int payPerYear = 12;

NumberFormat nf;

public void init() {

// Use a grid bag layout.

GridBagLayout gbag = new GridBagLayout();

GridBagConstraints gbc = new GridBagConstraints();

setLayout(gbag);

Label heading = new

Label("Compute Monthly Loan Payments");

Label amountLab = new Label("Principal");

Label periodLab = new Label("Years");

Label rateLab = new Label("Interest Rate");

Label paymentLab = new Label("Monthly Payments");

amountText = new TextField(16);

periodText = new TextField(16);

paymentText = new TextField(16);

rateText = new TextField(16);

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:24 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Payment field for display only.

paymentText.setEditable(false);

doIt = new Button("Compute");

// Define the grid bag.

gbc.weighty = 1.0; // use a row weight of 1

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbc.anchor = GridBagConstraints.NORTH;

gbag.setConstraints(heading, gbc);

// Anchor most components to the right.

gbc.anchor = GridBagConstraints.EAST;

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(amountLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(amountText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(periodLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(periodText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(rateLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(rateText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(paymentLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(paymentText, gbc);

gbc.anchor = GridBagConstraints.CENTER;

gbag.setConstraints(doIt, gbc);

// Add all the components.

add(heading);

add(amountLab);

add(amountText);

add(periodLab);

add(periodText);

add(rateLab);

add(rateText);

2 8 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:24 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 2 8 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

add(paymentLab);

add(paymentText);

add(doIt);

// Register to receive action events.

amountText.addActionListener(this);

periodText.addActionListener(this);

rateText.addActionListener(this);

doIt.addActionListener(this);

nf = NumberFormat.getInstance();

nf.setMinimumFractionDigits(2);

nf.setMaximumFractionDigits(2);

}

/* User pressed Enter on a text field or

pressed Compute. */

public void actionPerformed(ActionEvent ae) {

repaint();

}

// Display the result if all fields are completed.

public void paint(Graphics g) {

double result = 0.0;

String amountStr = amountText.getText();

String periodStr = periodText.getText();

String rateStr = rateText.getText();

try {

if(amountStr.length() != 0 &&

periodStr.length() != 0 &&

rateStr.length() != 0) {

principal = Double.parseDouble(amountStr);

numYears = Double.parseDouble(periodStr);

intRate = Double.parseDouble(rateStr) / 100;

result = compute();

paymentText.setText(nf.format(result));

}

showStatus(""); // erase any previous error message

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:24 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



} catch (NumberFormatException exc) {

showStatus("Invalid Data");

paymentText.setText("");

}

}

// Compute the loan payment.

double compute() {

double numer;

double denom;

double b, e;

numer = intRate * principal / payPerYear;

e = -(payPerYear * numYears);

b = (intRate / payPerYear) + 1.0;

denom = 1.0 - Math.pow(b, e);

return numer / denom;

}

}

The applet produced by this program is shown in Figure 9-1. To use the applet, simply

enter the loan principal, the length of the loan in years, and the interest rate. The payments

are assumed to be monthly. Once the information is entered, press Compute to calculate the

monthly payment.

The following sections examine the code to RegPay in detail. Because all the applets in

this chapter use the same basic framework, much of the explanation presented here applies

to the other applets presented in this chapter.

2 8 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

Figure 9-1 The RegPay applet

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:24 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 2 8 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

The RegPay Fields
RegPay begins by declaring a number of instance variables that hold references to the text

fields into which the user will enter the loan information. Next, it declares the doIt variable

that will hold a reference to the Compute button.

RegPay then declares three double variables that hold the loan values. The original

principal is stored in principal, the interest rate is stored in intRate, and the length of the

loan in years is stored in numYears. These values are entered by the user through the text

fields. Next, the final integer variable payPerYear is declared and initialized to 12. Thus,

the number of payments per year is hard coded to monthly because this is the way that most

loans are paid. As the comments suggest, you could allow the user to enter this value, but

doing so will require another text field.

The last instance variable declared by RegPay is nf, a reference to an object of type

NumberFormat, which will describe the number format used for output.

The init( ) Method
Like all applets, the init( ) method is called when the applet first starts execution. This method

performs four main tasks:

1. It changes the layout manager to GridBagLayout.

2. It instantiates the various GUI components.

3. It adds the components to the grid bag.

4. It adds action listeners for the components.

Let’s now look at init( ) line by line. The init( ) method begins with these lines of code:

// Use a grid bag layout.

GridBagLayout gbag = new GridBagLayout();

GridBagConstraints gbc = new GridBagConstraints();

setLayout(gbag);

For many small applets, the default flow layout is perfectly acceptable. However, because

the financial applets require the user to enter several values, it is necessary to take a bit more

control over how the components are arranged within the applet window. A good way to do

this is to use a grid bag layout, which is specified by the GridBagLayout class. What makes

the grid bag useful is that you can specify the relative placement of components by specifying

their positions in a grid. The key to the grid bag is that each component can be a different

size, and each row in the grid can have a different number of columns. This is why the layout

is called a grid bag. It’s a collection of small grids joined together.

The location and size of each component in a grid bag are determined by a set of constraints

that are linked to it. The constraints are contained in an object of type GridBagConstraints.

Constraints include the height and width of a component, its alignment, and its anchor point.

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:25 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Next, init( ) creates the label components, text fields, and Compute button, as shown here:

Label heading = new

Label("Compute Monthly Loan Payments");

Label amountLab = new Label("Principal");

Label periodLab = new Label("Years");

Label rateLab = new Label("Interest Rate");

Label paymentLab = new Label("Monthly Payments");

amountText = new TextField(16);

periodText = new TextField(16);

paymentText = new TextField(16);

rateText = new TextField(16);

// Payment field for display only.

paymentText.setEditable(false);

doIt = new Button("Compute");

Notice that the text field that displays the monthly payment is set to read-only by calling

setEditable(false). This causes the field to be grayed.

Next, the grid bag constraints for each component are set by the following code sequence:

// Define the grid bag.

gbc.weighty = 1.0; // use a row weight of 1

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbc.anchor = GridBagConstraints.NORTH;

gbag.setConstraints(heading, gbc);

// Anchor most components to the right.

gbc.anchor = GridBagConstraints.EAST;

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(amountLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(amountText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(periodLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(periodText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(rateLab, gbc);

2 8 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:25 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(rateText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(paymentLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(paymentText, gbc);

gbc.anchor = GridBagConstraints.CENTER;

gbag.setConstraints(doIt, gbc);

Although this seems a bit complicated at first glance, it really isn’t. Just remember that

each row in the grid is specified separately. Here is how the sequence works. First, the weight

of each row, contained in gbc.weighty, is set to 1. This tells the grid bag to distribute extra

space evenly when there is more vertical space than needed to hold the components. Next,

the gbc.gridwidth is set to REMAINDER, and gbc.anchor is set to NORTH. The label

referred to by heading is added by calling setConstraints( ) on gbag. This sequence sets the

location of heading to the top of the grid (north) and gives it the remainder of the row. Thus,

after this sequence executes, the heading will be at the top of the window and on a row by itself.

Next, the four text fields and their labels are added. First, gbc.anchor is set to EAST. This

causes each component to be aligned to the right. Next, gbc.gridWidth is set to

RELATIVE, and the label is added. Then, gbc.gridWidth is set to REMAINDER, and the

text field is added. Thus, each text field and label pair occupies one row. This process repeats

until all four text field and label pairs have been added. Finally, the Compute button is added

in the center.

After the grid bag constraints have been set, the components are actually added to the

window by the following code:

// Add all the components.

add(heading);

add(amountLab);

add(amountText);

add(periodLab);

add(periodText);

add(rateLab);

add(rateText);

add(paymentLab);

add(paymentText);

add(doIt);

Next, action listeners are registered for the three input text fields and the Compute button,

as shown here:

// Register to receive action events.

amountText.addActionListener(this);

periodText.addActionListener(this);

C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 2 8 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:25 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



rateText.addActionListener(this);

doIt.addActionListener(this);

Finally, the number format is set to two decimal digits:

nf = NumberFormat.getInstance();

nf.setMinimumFractionDigits(2);

nf.setMaximumFractionDigits(2);

The actionPerformed( ) Method
The actionPerformed( ) method is called whenever the user presses ENTER when in a text

field or presses the Compute button. This method simply calls repaint( ), which eventually

causes paint( ) to be called.

The paint( ) Method
The paint( ) method performs three main functions: it obtains the loan information entered

by the user, it calls compute( ) to find the loan payments, and it displays the result. Let’s now

examine paint( ) line by line.

After declaring the result variable, paint( ) begins by obtaining the strings from the three

user-input text fields using the following sequence:

String amountStr = amountText.getText();

String periodStr = periodText.getText();

String rateStr = rateText.getText();

Next, it begins a try block and then verifies that all three fields actually contain

information, as shown here:

try {

if(amountStr.length() != 0 &&

periodStr.length() != 0 &&

rateStr.length() != 0) {

Recall that the user must enter the original loan amount, the number of years for the loan,

and the interest rate. If all three text fields contain information, then the length of each string

will be greater than zero.

If the user has entered all the loan data, then the numeric values corresponding to those

strings are obtained and stored in the appropriate instance variable. Next, compute( ) is

called to compute the loan payment, and the result is displayed in the read-only text field

referred to by paymentText, as shown here:

principal = Double.parseDouble(amountStr);

numYears = Double.parseDouble(periodStr);

intRate = Double.parseDouble(rateStr) / 100;

2 8 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:25 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



result = compute();

paymentText.setText(nf.format(result));

If the user has entered a nonnumeric value into one of the text fields, then

Double.parseDouble( ) will throw a NumberFormatException. If this happens, an

error message will be displayed on the status line and the Payment text field will be

emptied, as shown here:

showStatus(""); // erase any previous error message

} catch (NumberFormatException exc) {

showStatus("Invalid Data");

paymentText.setText("");

}

Otherwise, any previously reported error is removed.

The compute( ) Method
The calculation of the loan payment takes place in compute( ). It implements the formula

shown earlier and operates on the values in principal, intRate, numYears, and payPerYear.

It returns the result.

NOTE
The basic skeleton used by RegPay is used by all the applets shown in this chapter.

Finding the Future Value of an Investment
Another popular financial calculation finds the future value of an investment given the initial

investment, the rate of return, the number of compounding periods per year, and the number

of years the investment is held. For example, you might want to know what your retirement

account will be worth in 12 years if it currently contains $98,000 and has an average annual

rate of return of 6 percent. The FutVal applet developed here will supply the answer.

To compute the future value, use the following formula:

Future Value = principal * ((rateOfRet / compPerYear) + 1)
compPerYear * numYears

where rateOfRet specifies the rate of return, principal contains the initial value of the investment,

compPerYear specifies the number of compounding periods per year, and numYears specifies

the length of the investment in years. If you use an annualized rate of return for rateOfRet,

then the number of compounding periods is 1.

The following applet called FutVal uses the preceding formula to compute the future

value of an investment. The applet produced by this program is shown in Figure 9-2.

C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 2 8 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:25 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 8 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

Aside from the computational differences within the compute( ) method, the applet is similar

in operation to the RegPay applet described in the preceding section.

// Compute the future value of an investment.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.text.*;

/*

<applet code="FutVal" width=340 height=240>

</applet>

*/

public class FutVal extends Applet

implements ActionListener {

TextField amountText, futvalText, periodText,

rateText, compText;

Button doIt;

double principal; // original principal

double rateOfRet; // rate of return

double numYears;  // length of investment in years

int compPerYear;  // number of compoundings per year

NumberFormat nf;

public void init() {

Figure 9-2 The FutVal applet

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:26 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 2 8 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

// Use a grid bag layout.

GridBagLayout gbag = new GridBagLayout();

GridBagConstraints gbc = new GridBagConstraints();

setLayout(gbag);

Label heading = new

Label("Future Value of an Investment");

Label amountLab = new Label("Principal");

Label periodLab = new Label("Years");

Label rateLab = new Label("Rate of Return");

Label futvalLab =

new Label("Future Value of Investment");

Label compLab =

new Label("Compounding Periods per Year ");

amountText = new TextField(16);

periodText = new TextField(16);

futvalText = new TextField(16);

rateText = new TextField(16);

compText = new TextField(16);

// Future value field for display only.

futvalText.setEditable(false);

doIt = new Button("Compute");

// Define the grid bag.

gbc.weighty = 1.0; // use a row weight of 1

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbc.anchor = GridBagConstraints.NORTH;

gbag.setConstraints(heading, gbc);

// Anchor most components to the right.

gbc.anchor = GridBagConstraints.EAST;

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(amountLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(amountText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(periodLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(periodText, gbc);

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:26 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(rateLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(rateText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(compLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(compText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(futvalLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(futvalText, gbc);

gbc.anchor = GridBagConstraints.CENTER;

gbag.setConstraints(doIt, gbc);

add(heading);

add(amountLab);

add(amountText);

add(periodLab);

add(periodText);

add(rateLab);

add(rateText);

add(compLab);

add(compText);

add(futvalLab);

add(futvalText);

add(doIt);

// Register to receive action events.

amountText.addActionListener(this);

periodText.addActionListener(this);

rateText.addActionListener(this);

compText.addActionListener(this);

doIt.addActionListener(this);

nf = NumberFormat.getInstance();

nf.setMinimumFractionDigits(2);

nf.setMaximumFractionDigits(2);

}

/* User pressed Enter on a text field or

pressed Compute. */

2 9 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:26 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



public void actionPerformed(ActionEvent ae) {

repaint();

}

public void paint(Graphics g) {

double result = 0.0;

String amountStr = amountText.getText();

String periodStr = periodText.getText();

String rateStr = rateText.getText();

String compStr = compText.getText();

try {

if(amountStr.length() != 0 &&

periodStr.length() != 0 &&

rateStr.length() != 0 &&

compStr.length() != 0) {

principal = Double.parseDouble(amountStr);

numYears = Double.parseDouble(periodStr);

rateOfRet = Double.parseDouble(rateStr) / 100;

compPerYear = Integer.parseInt(compStr);

result = compute();

futvalText.setText(nf.format(result));

}

showStatus(""); // erase any previous error message

} catch (NumberFormatException exc) {

showStatus("Invalid Data");

futvalText.setText("");

}

}

// Compute the future value.

double compute() {

double b, e;

b = (1 + rateOfRet/compPerYear);

e = compPerYear * numYears;

return principal * Math.pow(b, e);

}

}

C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 2 9 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:26 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



2 9 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

Finding the Initial Investment Required
to Achieve a Future Value
Sometimes you will want to know how large an initial investment is required to achieve some

future value. For example, if you are saving for your child’s college education and you know

that you will need $75,000 in five years, how much money do you need to invest at 7 percent

to reach that goal? The InitInv applet developed here can answer that question.

The formula to compute an initial investment is shown here:

Initial Investment = targetValue / (((rateOfRet / compPerYear) + 1)
compPerYear * numYears

)

where rateOfRet specifies the rate of return, targetValue contains the starting balance,

compPerYear specifies the number of compounding periods per year, and numYears specifies

the length of the investment in years. If you use an annualized rate of return for rateOfRet,

then the number of compounding periods is 1.

The following applet called InitInv uses the preceding formula to compute the initial

investment require to reach a desired future value. The applet produced by this program is

shown in Figure 9-3.

/* Compute the initial investment necessary for
a specified future value.  */

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.text.*;
/*
<applet code="InitInv" width=340 height=240>
</applet>

*/

public class InitInv extends Applet
implements ActionListener {

TextField targetText, initialText, periodText,
rateText, compText;

Button doIt;

double targetValue; // original target value
double rateOfRet;   // rate of return
double numYears;    // length of loan in years
int compPerYear;    // number of compoundings per year

NumberFormat nf;

public void init() {
// Use a grid bag layout.

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:26 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 2 9 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

GridBagLayout gbag = new GridBagLayout();
GridBagConstraints gbc = new GridBagConstraints();
setLayout(gbag);

Label heading = new
Label("Initial Investment Needed for " +

"Future Value");

Label targetLab = new Label("Desired Future Value ");
Label periodLab = new Label("Years");
Label rateLab = new Label("Rate of Return");
Label compLab =

new Label("Compounding Periods per Year");
Label initialLab =

new  Label("Initial Investment Required");

targetText = new TextField(16);
periodText = new TextField(16);
initialText = new TextField(16);
rateText = new TextField(16);
compText = new TextField(16);

// Initial value field for display only.
initialText.setEditable(false);

doIt = new Button("Compute");

// Define the grid bag.
gbc.weighty = 1.0; // use a row weight of 1

gbc.gridwidth = GridBagConstraints.REMAINDER;
gbc.anchor = GridBagConstraints.NORTH;
gbag.setConstraints(heading, gbc);

// Anchor most components to the right.
gbc.anchor = GridBagConstraints.EAST;

gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(targetLab, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(targetText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(periodLab, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(periodText, gbc);

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:26 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(rateLab, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(rateText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(compLab, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(compText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(initialLab, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(initialText, gbc);

gbc.anchor = GridBagConstraints.CENTER;
gbag.setConstraints(doIt, gbc);

// Add all the components.
add(heading);
add(targetLab);
add(targetText);
add(periodLab);
add(periodText);
add(rateLab);
add(rateText);
add(compLab);
add(compText);
add(initialLab);
add(initialText);
add(doIt);

// Register to receive action events
targetText.addActionListener(this);
periodText.addActionListener(this);
rateText.addActionListener(this);
compText.addActionListener(this);
doIt.addActionListener(this);

nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(2);
nf.setMaximumFractionDigits(2);

}

/* User pressed Enter on a text field
or pressed Compute. */

2 9 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:26 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



public void actionPerformed(ActionEvent ae) {
repaint();

}

public void paint(Graphics g) {
double result = 0.0;

String targetStr = targetText.getText();
String periodStr = periodText.getText();
String rateStr = rateText.getText();
String compStr = compText.getText();

try {
if(targetStr.length() != 0 &&

periodStr.length() != 0 &&
rateStr.length() != 0 &&
compStr.length() != 0) {

targetValue = Double.parseDouble(targetStr);
numYears = Double.parseDouble(periodStr);
rateOfRet = Double.parseDouble(rateStr) / 100;
compPerYear = Integer.parseInt(compStr);

result = compute();

initialText.setText(nf.format(result));
}

showStatus(""); // erase any previous error message
} catch (NumberFormatException exc) {
showStatus("Invalid Data");
initialText.setText("");

}
}

// Compute the required initial investment.
double compute() {
double b, e;

b = (1 + rateOfRet/compPerYear);
e = compPerYear * numYears;

return targetValue / Math.pow(b, e);
}

}

C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 2 9 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:26 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Finding the Initial Investment Needed
for a Desired Annuity
Another common financial calculation computes the amount of money that one must invest

so that a desired annuity, in terms of a regular withdrawal, can be paid. For example, you

might decide that you need $5,000 per month at retirement and that you will need that

amount for 20 years. The question is how much will you need to invest to secure that annuity?

The answer can be found using the following formula:

Initial Investment = ((regWD * wdPerYear) / rateOfRet) *

(1 – (1 / (rateOfRet / wdPerYear + 1)
wdPerYear * numYears

))

where rateOfRet specifies the rate of return, regWD contains the desired regular withdrawal,

wdPerYear specifies the number of withdrawals per year, and numYears specifies the length

of the annuity in years.

The Annuity applet shown here computes the initial investment required to produce the

desired annuity. The applet produced by this program is shown in Figure 9-4.

/* Compute the initial investment necessary for

a desired annuity. In other words, find

the initial amount needed to allow the regular

withdrawals of a desired amount over a period

of time.  */

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.text.*;

2 9 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

Figure 9-3 The InitInv applet

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:26 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 2 9 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

/*

<applet code="Annuity" width=340 height=260>

</applet>

*/

public class Annuity extends Applet

implements ActionListener {

TextField regWDText, initialText, periodText,

rateText, numWDText;

Button doIt;

double regWDAmount; // amount of each withdrawal

double rateOfRet;   // rate of return

double numYears;    // length of time in years

int numPerYear;     // number of withdrawals per year

NumberFormat nf;

public void init() {

// Use a grid bag layout.

GridBagLayout gbag = new GridBagLayout();

GridBagConstraints gbc = new GridBagConstraints();

setLayout(gbag);

Label heading = new

Label("Initial Investment Needed for " +

"Regular Withdrawals");

Label regWDLab = new Label("Desired Withdrawal");

Label periodLab = new Label("Years");

Label rateLab = new Label("Rate of Return");

Label numWDLab =

new Label("Number of Withdrawals per Year ");

Label initialLab =

new Label("Initial Investment Required");

regWDText = new TextField(16);

periodText = new TextField(16);

initialText = new TextField(16);

rateText = new TextField(16);

numWDText = new TextField(16);

// Initial investment field for display only.

initialText.setEditable(false);

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:26 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



doIt = new Button("Compute");

// Define the grid bag.

gbc.weighty = 1.0; // use a row weight of 1

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbc.anchor = GridBagConstraints.NORTH;

gbag.setConstraints(heading, gbc);

// Anchor most components to the right.

gbc.anchor = GridBagConstraints.EAST;

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(regWDLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(regWDText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(periodLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(periodText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(rateLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(rateText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(numWDLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(numWDText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(initialLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(initialText, gbc);

gbc.anchor = GridBagConstraints.CENTER;

gbag.setConstraints(doIt, gbc);

// Add all the components.

add(heading);

add(regWDLab);

add(regWDText);

2 9 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:26 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 2 9 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

add(periodLab);

add(periodText);

add(rateLab);

add(rateText);

add(numWDLab);

add(numWDText);

add(initialLab);

add(initialText);

add(doIt);

// Register to receive text field action events.

regWDText.addActionListener(this);

periodText.addActionListener(this);

rateText.addActionListener(this);

numWDText.addActionListener(this);

doIt.addActionListener(this);

nf = NumberFormat.getInstance();

nf.setMinimumFractionDigits(2);

nf.setMaximumFractionDigits(2);

}

// User pressed Enter on a text field.

public void actionPerformed(ActionEvent ae) {

repaint();

}

public void paint(Graphics g) {

double result = 0.0;

String regWDStr = regWDText.getText();

String periodStr = periodText.getText();

String rateStr = rateText.getText();

String numWDStr = numWDText.getText();

try {

if(regWDStr.length() != 0 &&

periodStr.length() != 0 &&

rateStr.length() != 0 &&

numWDStr.length() != 0) {

regWDAmount = Double.parseDouble(regWDStr);

numYears = Double.parseDouble(periodStr);

rateOfRet = Double.parseDouble(rateStr) / 100;

numPerYear = Integer.parseInt(numWDStr);

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:26 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



result = compute();

initialText.setText(nf.format(result));

}

showStatus(""); // erase any previous error message

} catch (NumberFormatException exc) {

showStatus("Invalid Data");

initialText.setText("");

}

}

// Compute the required initial investment.

double compute() {

double b, e;

double t1, t2;

t1 = (regWDAmount * numPerYear) / rateOfRet;

b = (1 + rateOfRet/numPerYear);

e = numPerYear * numYears;

t2 = 1 - (1 / Math.pow(b, e));

return t1 * t2;

}

}

3 0 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

Figure 9-4 The Annuity applet

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:27 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 3 0 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

Finding the Maximum Annuity for a Given Investment
Another annuity calculation computes the maximum annuity (in terms of a regular

withdrawal) available from a given investment over a specified period of time. For example,

if you have $500,000 in a retirement account, how much can you take out each month for 20

years, assuming a 6 percent rate of return? The formula that computes the maximum

withdrawal is shown here:

Maximum Withdrawal = principal * ( ( (rateOfRet / wdPerYear) /

(–1 + ((rateOfRet / wdPerYear) + 1)
wdPerYear * numYears

) ) +

(rateOfRet / wdPerYear) )

where rateOfRet specifies the rate of return, principal contains the value of the initial investment,

wdPerYear specifies the number of withdrawals per year, and numYears specifies the length

of the annuity in years.

The MaxWD applet shown here computes the maximum periodic withdrawals that can be

made over a specified length of time for an assumed rate of return. The applet produced by

this program is shown in Figure 9-5.

/* Compute the maximum annuity that can
be withdrawn from an investment over
a period of time.  */

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.text.*;
/*
<applet code="MaxWD" width=340 height=260>
</applet>

*/

public class MaxWD extends Applet
implements ActionListener {

TextField maxWDText, orgPText, periodText,
rateText, numWDText;

Button doIt;

double principal; // initial principal
double rateOfRet; // annual rate of return
double numYears;  // length of time in years
int numPerYear;   // number of withdrawals per year

NumberFormat nf;

public void init() {
// Use a grid bag layout.

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:27 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 0 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

GridBagLayout gbag = new GridBagLayout();
GridBagConstraints gbc = new GridBagConstraints();
setLayout(gbag);

Label heading = new
Label("Maximum Regular Withdrawals");

Label orgPLab = new Label("Original Principal");
Label periodLab = new Label("Years");
Label rateLab = new Label("Rate of Return");
Label numWDLab =

new Label("Number of Withdrawals per Year");
Label maxWDLab = new Label("Maximum Withdrawal");

maxWDText = new TextField(16);
periodText = new TextField(16);
orgPText = new TextField(16);
rateText = new TextField(16);
numWDText = new TextField(16);

// Max withdrawal field for display only.
maxWDText.setEditable(false);

doIt = new Button("Compute");

// Define the grid bag.
gbc.weighty = 1.0; // use a row weight of 1

gbc.gridwidth = GridBagConstraints.REMAINDER;
gbc.anchor = GridBagConstraints.NORTH;
gbag.setConstraints(heading, gbc);

// Anchor most components to the right.
gbc.anchor = GridBagConstraints.EAST;

gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(orgPLab, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(orgPText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(periodLab, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(periodText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(rateLab, gbc);

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:27 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 3 0 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(rateText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(numWDLab, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(numWDText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(maxWDLab, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(maxWDText, gbc);

gbc.anchor = GridBagConstraints.CENTER;
gbag.setConstraints(doIt, gbc);

// Add all the components.
add(heading);
add(orgPLab);
add(orgPText);
add(periodLab);
add(periodText);
add(rateLab);
add(rateText);
add(numWDLab);
add(numWDText);
add(maxWDLab);
add(maxWDText);
add(doIt);

// Register to receive action events.
orgPText.addActionListener(this);
periodText.addActionListener(this);
rateText.addActionListener(this);
numWDText.addActionListener(this);
doIt.addActionListener(this);

nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(2);
nf.setMaximumFractionDigits(2);

}

/* User pressed Enter on a text field or
pressed Compute. */

public void actionPerformed(ActionEvent ae) {
repaint();

}

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:27 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 0 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

public void paint(Graphics g) {
double result = 0.0;

String orgPStr = orgPText.getText();
String periodStr = periodText.getText();
String rateStr = rateText.getText();
String numWDStr = numWDText.getText();

try {
if(orgPStr.length() != 0 &&

periodStr.length() != 0 &&
rateStr.length() != 0 &&
numWDStr.length() != 0) {

principal = Double.parseDouble(orgPStr);
numYears = Double.parseDouble(periodStr);
rateOfRet = Double.parseDouble(rateStr) / 100;
numPerYear = Integer.parseInt(numWDStr);

result = compute();

maxWDText.setText(nf.format(result));
}

showStatus(""); // erase any previous error message
} catch (NumberFormatException exc) {
showStatus("Invalid Data");
maxWDText.setText("");

}
}

// Compute the maximum regular withdrawals.
double compute() {
double b, e;
double t1, t2;

t1 = rateOfRet / numPerYear;

b = (1 + t1);
e = numPerYear * numYears;

t2 = Math.pow(b, e) - 1;

return principal * (t1/t2 + t1);
}

}

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:27 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 3 0 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

Finding the Remaining Balance on a Loan
Often you will want to know the remaining balance on a loan. This is easily calculated if you

know the original principal, the interest rate, the loan length, and the number of payments

made. To find the remaining balance, you must sum the payments, subtracting from each

payment the amount allocated to interest, and then subtract that result from the principal.

The RemBal applet, shown here, finds the remaining balance of a loan. The applet

produced by this program is shown in Figure 9-6.

// Find the remaining balance on a loan.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.text.*;

/*

<applet code="RemBal" width=340 height=260>

</applet>

*/

public class RemBal extends Applet

implements ActionListener {

TextField orgPText, paymentText, remBalText,

rateText, numPayText;

Figure 9-5 The MaxWD applet

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:27 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 0 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

Button doIt;

double orgPrincipal; // original principal

double intRate;      // interest rate

double payment;      // amount of each payment

double numPayments;  // number of payments made

/* Number of payments per year.  You could

allow this value to be set by the user. */

final int payPerYear = 12;

NumberFormat nf;

public void init() {

// Use a grid bag layout.

GridBagLayout gbag = new GridBagLayout();

GridBagConstraints gbc = new GridBagConstraints();

setLayout(gbag);

Label heading = new

Label("Find Loan Balance ");

Label orgPLab = new Label("Original Principal");

Label paymentLab = new Label("Amount of Payment");

Label numPayLab = new Label("Number of Payments Made");

Label rateLab = new Label("Interest Rate");

Label remBalLab = new Label("Remaining Balance");

orgPText = new TextField(16);

paymentText = new TextField(16);

remBalText = new TextField(16);

rateText = new TextField(16);

numPayText = new TextField(16);

// Payment field for display only.

remBalText.setEditable(false);

doIt = new Button("Compute");

// Define the grid bag.

gbc.weighty = 1.0; // use a row weight of 1

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:27 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 3 0 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbc.anchor = GridBagConstraints.NORTH;

gbag.setConstraints(heading, gbc);

// Anchor most components to the right.

gbc.anchor = GridBagConstraints.EAST;

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(orgPLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(orgPText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(paymentLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(paymentText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(rateLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(rateText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(numPayLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(numPayText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;

gbag.setConstraints(remBalLab, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

gbag.setConstraints(remBalText, gbc);

gbc.anchor = GridBagConstraints.CENTER;

gbag.setConstraints(doIt, gbc);

// Add all the components.

add(heading);

add(orgPLab);

add(orgPText);

add(paymentLab);

add(paymentText);

add(numPayLab);

add(numPayText);

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:27 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 0 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

add(rateLab);

add(rateText);

add(remBalLab);

add(remBalText);

add(doIt);

// Register to receive action events.

orgPText.addActionListener(this);

numPayText.addActionListener(this);

rateText.addActionListener(this);

paymentText.addActionListener(this);

doIt.addActionListener(this);

nf = NumberFormat.getInstance();

nf.setMinimumFractionDigits(2);

nf.setMaximumFractionDigits(2);

}

/* User pressed Enter on a text field

or pressed Compute. */

public void actionPerformed(ActionEvent ae) {

repaint();

}

public void paint(Graphics g) {

double result = 0.0;

String orgPStr = orgPText.getText();

String numPayStr = numPayText.getText();

String rateStr = rateText.getText();

String payStr = paymentText.getText();

try {

if(orgPStr.length() != 0 &&

numPayStr.length() != 0 &&

rateStr.length() != 0 &&

payStr.length() != 0) {

orgPrincipal = Double.parseDouble(orgPStr);

numPayments = Double.parseDouble(numPayStr);

intRate = Double.parseDouble(rateStr) / 100;

payment = Double.parseDouble(payStr);

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:27 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



result = compute();

remBalText.setText(nf.format(result));

}

showStatus(""); // erase any previous error message

} catch (NumberFormatException exc) {

showStatus("Invalid Data");

remBalText.setText("");

}

}

// Compute the loan balance.

double compute() {

double bal = orgPrincipal;

double rate = intRate / payPerYear;

for(int i = 0; i < numPayments; i++)

bal -= payment - (bal * rate);

return bal;

}

}

C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 3 0 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

Figure 9-6 The RemBal applet

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:27 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 1 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

Creating Financial Servlets
Although applets are easy to create and use, they are only one half of the Java Internet equation.

The other half is servlets. Servlets execute on the server side of the connection, and they are

more appropriate for some applications. Because many readers may want to use servlets rather

than applets in their commercial applications, the remainder of this chapter shows how to

convert the financial applets into servlets.

Because all the financial applets use the same basic skeleton, we will walk through the

conversion of only one applet: RegPay. You can then apply the same basic process to convert

any of the other applets into servlets on your own. As you will see, it’s not hard to do.

One other point: This book assumes that you understand the basic architecture and life

cycle of a servlet. If you need to refresh your understanding of servlets, an overview can be

found in Java 2: The Complete Reference by Herbert Schildt (Berkeley, CA: McGraw-Hill/

Osborne, 2002).

Using Tomcat
Before developing a servlet, it will be useful to review the procedure needed to compile and

run one. Servlets require a bit more work on your part than do applets.

To compile and test the servlet developed here, you must have installed a servlet development

environment. The one currently recommended by Sun is Tomcat. At the time of this writing,

the current release version of Tomcat is 4.1, which supports servlet specification 2.3. (The

complete servlet specification is available for download by linking through java.sun.com. Both

the current release of Tomcat and the servlet specification may have been updated by the time

you read this book.) Tomcat replaces the old Java Servlet Development Kit (JSDK) that was

previously provided by Sun. Tomcat is an open-source product maintained by the Jakarta

Project of the Apache Software Foundation. It contains the class libraries, documentation,

and runtime support that you will need to create and test servlets. You can download Tomcat

by linking through the Sun Microsystems web site at java.sun.com.

Assuming a Windows environment, the default location for Tomcat 4.1 is

C:\Program Files\Apache Group\Tomcat 4.1\

This is the location assumed by the example in this chapter. If you load Tomcat in a different

location, you will need to make appropriate changes to the example. You may need to set the

environmental variable JAVA_HOME to the top-level directory in which the Java Software

Developers Kit is installed. For Java 2, version 1.4, the default directory is C:\j2sdk1.4.0, but

you will need to confirm this for your environment and adjust accordingly.

The directory

C:\Program Files\Apache Group\Tomcat 4.1\common\lib\

contains servlet.jar. This JAR file contains the classes and interfaces that are needed to build

servlets. To make this file accessible, update your CLASSPATH environment variable so that

it includes:

C:\Program Files\Apache Group\Tomcat 4.1\common\lib\servlet.jar

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:27 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Alternatively, you can specify this class file when you compile the servlets. For example, the

following command compiles a servlet called MyServlet:

javac MyServlet.java -classpath "C:\Program Files\Apache Group\

Tomcat 4.1\common\lib\servlet.jar"

Once you have compiled a servlet, you must copy the class file onto the server that you will

be using or use Tomcat to test the servlet, as described next.

Test Running a Servlet
For the purposes of testing or experimenting, you can use Tomcat to run a servlet directly

from the host computer without having to connect to the Internet. To do this, you must copy

the servlet’s .class file into the directory that Tomcat uses for example servlet class files,

which for the purposes of this chapter, is shown here:

C:\Program Files\Apache Group\Tomcat 4.1\webapps\examples\WEB-INF\classes

Once you have the servlet copied into the proper directory, you must start Tomcat. You can

either select Start Tomcat in the Start | Programs menu or run startup.bat from the following

directory:

C:\Program Files\Apache Group\Tomcat 4.1\bin\

When you are done testing servlets, you can stop Tomcat by selecting Stop Tomcat in the

Start | Programs menu or by running shutdown.bat.

To test the servlet, start a web browser and enter a URL that is similar to that shown here:

http://localhost:8080/examples/servlet/MyServlet

Of course, you must substitute the real name of the servlet for MyServlet. By specifying

localhost:8080, you are specifying the host computer.

Converting the RegPay Applet into a Servlet
It is fairly easy to convert the RegPay loan calculating applet into a servlet. First, the

servlet must import the javax.servlet and javax.servlet.http packages. It must also extend

HttpServlet, not Applet. Next, you must remove all the GUI code. Then, you must add the

code that obtains the parameters passed to the servlet by the HTML that calls the servlet. Finally,

the servlet must send the HTML that displays the results. The basic financial calculations

remain the same. It is only the way data is obtained and displayed that changes.

The RegPayS Servlet
The following RegPayS class is the servlet version of the RegPay applet:

// A simple loan calculator servlet.

import javax.servlet.*;

import javax.servlet.http.*;

C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 3 1 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:27 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 1 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

import java.io.*;

import java.text.*;

public class RegPayS extends HttpServlet {

double principal; // original principal

double intRate;   // interest rate

double numYears;  // length of loan in years

/* Number of payments per year.  You could

allow this value to be set by the user. */

final int payPerYear = 12;

NumberFormat nf;

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

String payStr = "";

nf = NumberFormat.getInstance();

nf.setMinimumFractionDigits(2);

nf.setMaximumFractionDigits(2);

// Get the parameters.

String amountStr = request.getParameter("amount");

String periodStr = request.getParameter("period");

String rateStr = request.getParameter("rate");

try {

if(amountStr != null && periodStr != null &&

rateStr != null) {

principal = Double.parseDouble(amountStr);

numYears = Double.parseDouble(periodStr);

intRate = Double.parseDouble(rateStr) / 100;

payStr = nf.format(compute());

}

else { // one or more parameters missing

amountStr = "";

periodStr = "";

rateStr = "";

}

} catch (NumberFormatException exc) {

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:28 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 3 1 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

// No action required for this exception.

}

// Set the content type.

response.setContentType("text/html");

// Get the output stream.

PrintWriter pw = response.getWriter();

// Display the necessary HTML.

pw.print("<html><body> <left>" +

"<form name=\"Form1\"" +

" action=\"http://localhost:8080/" +

"examples/servlet/RegPayS\">" +

"<B>Enter amount to finance:</B>" +

" <input type=textbox name=\"amount\"" +

" size=12 value=\"");

pw.print(amountStr + "\">");

pw.print("<BR><B>Enter term in years:</B>" +

" <input type=textbox name=\"period\""+

" size=12 value=\"");

pw.println(periodStr + "\">");

pw.print("<BR><B>Enter interest rate:</B>" +

" <input type=textbox name=\"rate\"" +

" size=12 value=\"");

pw.print(rateStr + "\">");

pw.print("<BR><B>Monthly Payment:</B>" +

" <input READONLY type=textbox" +

" name=\"payment\" size=12 value=\"");

pw.print(payStr + "\">");

pw.print("<BR><P><input type=submit value=\"Submit\">");

pw.println("</form> </body> </html>");

}

// Compute the loan payment.

double compute() {

double numer;

double denom;

double b, e;

numer = intRate * principal / payPerYear;

e = -(payPerYear * numYears);

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:28 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 1 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

b = (intRate / payPerYear) + 1.0;

denom = 1.0 - Math.pow(b, e);

return numer / denom;

}

}

The first thing to notice about RegPayS is that it has only two methods: doGet( ) and

compute( ). The compute( ) method is the same as that used by the applet. The doGet( )

method is defined by the HttpServlet class, which RegPayS extends. This method is called

by the server when the servlet must respond to a GET request. Notice that it is passed a

reference to the HttpServletRequest and HttpServletResponse objects associated with

the request.

From the request parameter, the servlet obtains the arguments associated with the request.

It does this by calling getParameter( ). The parameter is returned in its string form. Thus, a

numeric value must be manually converted into its binary format. If no parameter is available,

a null is returned.

From the response object, the servlet obtains a stream to which response information can

be written. The response is then returned to the browser by outputting to that stream. Prior to

obtaining a PrintWriter to the response stream, the output type should be set to text/html by

calling setContentType( ).

RegPayS can be called with or without parameters. If called without parameters, the servlet

responds with the necessary HTML to display an empty loan calculator form. Otherwise, if

called with all needed parameters, then RegPayS calculates the loan payment and redisplays

the form, with the payment field filled in. Figure 9-7 shows the RegPayS servlet in action.

The simplest way to invoke RegPayS is to link to its URL without passing any

parameters. For example, if you are using Tomcat, you can use this line:

<A HREF = "http://localhost:8080/examples/servlet/RegPayS">Loan Calculator</A>

This displays a link called Loan Calculator that links to the RegPayS servlet in the

Tomcat example servlets directory. Notice that no parameters are passed. This causes

RegPayS to return the complete HTML that displays an empty loan calculator page.

You can also invoke RegPayS by first displaying an empty form manually, if you like.

This approach is shown here, again using the Tomcat directory:

<html>

<body>

<form name="Form1"

action="http://localhost:8080/examples/servlet/RegPayS">

<B>Enter amount to finance:</B>

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:28 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



<input type=textbox name="amount" size=12 value="">

<BR>

<B>Enter term in years:</B>

<input type=textbox name="period" size=12 value="">

<BR>

<B>Enter interest rate:</B>

<input type=textbox name="rate" size=12 value="">

<BR>

<B>Monthly Payment:</B>

<input READONLY type=textbox name="payment"

size=12 value="">

<BR><P>

<input type=submit value="Submit">

</form>

</body>

</html>

C h a p t e r 9 : F i n a n c i a l A p p l e t s a n d S e r v l e t s 3 1 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

Figure 9-7 The RegPayS servlet in action

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:28 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Some Things to Try
The first thing you might want to try is converting the other financial applets into servlets.

Because all the financial applets are built on the same skeleton, simply follow the same

approach as used by RegPayS.

There are many other financial calculations that you might find useful to implement as applets

or servlets, such as the rate of return of an investment or the amount of a regular deposit needed

over time to reach a future value. You could also print a loan amortization chart.

You might want to try creating a larger application that offers all the calculations

presented in this chapter, allowing the user to select the desired calculation from a menu.

3 1 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 9

P:\010Comp\ApDev\971-3\ch09.vp
Tuesday, July 08, 2003 9:07:28 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



CHAPTER

10
AI-Based

Problem Solving
by Herb Schildt

317

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:54 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 1 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

To conclude this book, we will examine a topic from an interesting discipline of

programming: artificial intelligence (AI). As explained earlier, the goal of this

book is to show the richness and power of the Java language. Perhaps nothing

demonstrates that better than its application to the demanding realm of artificial intelligence.

Java’s powerful string-handling capabilities and Stack class streamline many types of

AI-based code. Java’s object model keeps the code clean, as does its garbage collection

facility. As this final chapter shows, Java is a language well suited to the AI developer.

The field of artificial intelligence is comprised of several fascinating areas, but

fundamental to many AI-based applications is problem solving. Essentially, there are two

types of problems. The first type can be solved through the use of some sort of deterministic

procedure that is guaranteed success, such as the computation of the sine of an angle or the

square root of a value. These types of problems are easily translated into algorithms that a

computer can execute. In the real world, however, few problems lend themselves to such

straightforward solutions. Instead, many problems can be solved only by searching for a

solution. It is this type of problem solving with which AI is concerned. It is also the type of

searching that is explored in this chapter.

To understand why searching is so important to AI, consider the following. One of the

early goals of AI research was the creation of a general problem solver. A general problem

solver is a program that can produce solutions to all sorts of different problems about which

it has no specific, designed-in knowledge. It is an understatement to say that such a program

would be highly desirable. Unfortunately, a general problem solver is as difficult to realize

as it is tantalizing. One complication is the sheer size and complexity of many real-world

situations. Because a general problem solver must search for a solution through what might

be a very large, mazelike universe of possibilities, finding ways to search such an environment

is a priority. Although we won’t attempt something as ambitious as a general problem solver

in this chapter, we will explore several AI-based search techniques that are applicable to a

wide variety of problems.

Representation and Terminology
Imagine that you have lost your car keys. You know that they are somewhere in your house,

which looks like this:

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:55 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

You are standing at the front door (where the X is). As you begin your search, you

check the living room. Then you go down the hall to the first bedroom, through the

hall to the second bedroom, back to the hall, and to the master bedroom. Not having

found your keys, you backtrack further by going back through the living room. Finally,

you find your keys in the kitchen. This situation is easily represented by a graph, as

shown in Figure 10-1. Representing search problems in graphical form is helpful because

it provides a convenient way to depict the way a solution was found.

With the preceding discussion in mind, consider the following terms, which will be

used throughout this chapter:

Node A discrete point

Terminal node A node that ends a path

Search space The set of all nodes

Goal The node that is the object of the search

Heuristics Information about whether any specific node is a better next choice than another

Solution path A directed graph of the nodes visited en route to the goal

In the example of the lost keys, each room in the house is a node; the entire house is

the search space; the goal, as it turns out, is the kitchen; and the solution path is shown in

Figure 10-1. The bedrooms, kitchen, and the bath are terminal nodes because they lead

nowhere. Heuristics are not represented on a graph. Rather, they are techniques that you

might employ to help you better choose a path.

C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 1 9

AppDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 10

Figure 10-1 The solution path to find the missing keys

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:55 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 2 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

Combinatorial Explosions
Given the preceding example, you may think that searching for a solution is easy—you start

at the beginning and work your way to the conclusion. In the extremely simple case of the

lost keys, this is not a bad approach because the search space is so small. But for many

problems (especially those for which you would want to use a computer) the number of

nodes in the search space is very large, and as the search space grows, so does the number

of possible paths to the goal. The trouble is that often, adding another node to the search

space adds more than one path. That is, the number of potential pathways to the goal can

increase in a nonlinear fashion as the size of the search space grows. In a nonlinear situation,

the number of possible paths can quickly become very large.

For instance, consider the number of ways three objects—A, B, and C—can be arranged

on a table. The six possible permutations are

A B C

A C B

B C A

B A C

C B A

C A B

You can quickly prove to yourself that these six are the only ways that A, B, and C can be

arranged. However, you can derive the same number by using a theorem from the branch of

mathematics called combinatorics—the study of the way things can be combined. According

to the theorem, the number of ways that N objects can be arranged is equal to N! (N factorial).

The factorial of a number is the product of all whole numbers equal to or less than itself

down to 1. Therefore, 3! is 3 × 2 × 1, or 6. If you had four objects to arrange, there would

be 4!, or 24, permutations. With five objects, the number is 120, and with six it is 720. With

1000 objects the number of possible permutations is huge! The graph in Figure 10-2 gives

you a visual feel for what is sometimes referred to as a combinatoric explosion. Once there

are more than a handful of possibilities, it very quickly becomes difficult to examine (indeed,

even to enumerate) all the arrangements.

This same sort of combinatorial explosion can occur in paths through search spaces. Because

of this, only the simplest of problems lend themselves to exhaustive searches. An exhaustive

search is one that examines all nodes. Thus, it is a “brute-force” technique. Brute force always

works but is not often practical for large problems because it consumes too much time, too

many computing resources, or both. For this reason, AI-based search techniques were developed.

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:56 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 2 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

Figure 10-2 A combinatoric explosion with factorials

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:56 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Search Techniques
There are several ways to search for a solution. The four most fundamental are

� Depth first

� Breadth first

� Hill climbing

� Least cost

In the course of this chapter, each of these searches is examined.

Evaluating a Search
Evaluating the performance of an AI-based search technique can be complicated. Fortunately,

for our purposes we are concerned only with these two measurements:

� How quickly a solution is found

� How good the solution is

There are several types of problems for which all that matters is that a solution, any solution,

be found with the minimum effort. For these problems, the first measurement is especially

important. In other situations, the quality of the solution is more important.

The speed of a search is affected both by the size of the search space and by the number

of nodes actually traversed in the process of finding the solution. Because backtracking from

dead ends is wasted effort, you want a search that seldom retraces its steps.

In AI-based searching, there is a difference between finding the best solution and finding a

good solution. Finding the best solution can require an exhaustive search because sometimes

this is the only way to know that the best solution has been found. Finding a good solution,

in contrast, means finding a solution that is within a set of constraints—it does not matter if

a better solution might exist.

As you will see, the search techniques described in this chapter all work better in certain

situations than in others, so it is difficult to say whether one search method is always superior

to another. But some search techniques have a greater probability of being better for the

average case. In addition, the way a problem is defined can sometimes help you choose an

appropriate search method.

The Problem
Now let us consider the problem that we will use various searches to solve. Imagine that you

are a travel agent and a rather quarrelsome customer wants you to book a flight from New

York to Los Angeles with XYZ Airlines. You try to tell the customer that XYZ does not have

a direct flight from New York to Los Angeles, but the customer insists that XYZ is the only

airline that he will fly. Thus, you must find connecting flights between New York and Los

Angeles. You consult XYZ’s scheduled flights, shown here:

3 2 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:56 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Flight Distance
New York to Chicago 900 miles

Chicago to Denver 1000 miles

New York to Toronto 500 miles

New York to Denver 1800 miles

Toronto to Calgary 1700 miles

Toronto to Los Angeles 2500 miles

Toronto to Chicago 500 miles

Denver to Urbana 1000 miles

Denver to Houston 1000 miles

Houston to Los Angeles 1500 miles

Denver to Los Angeles 1000 miles

Quickly you see that there are connections that enable your customer to fly from New

York to Los Angeles. The problem is to write a Java program that does the same thing that

you just did in your head!

A Graphic Representation
The flight information in XYZ’s schedule can be translated into the directed graph shown

in Figure 10-3. A directed graph is simply a graph in which the lines connecting each node

C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 2 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

Figure 10-3 A directed graph of XYZ’s flight schedule

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:57 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 2 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

include an arrow to indicate the direction of motion. In a directed graph, you cannot travel

against the direction of the arrow.

To make things easier to understand, we can redraw this graph in a treelike fashion, as

shown in Figure 10-4. Refer to this version for the rest of this chapter. The goal, Los Angeles,

is circled. Notice also that various cities appear more than once to simplify the construction

of the graph. Thus, the treelike representation does not depict a binary tree. It is simply a

visual convenience.

Now we are ready to develop the various search programs that will find paths from New

York to Los Angeles.

Figure 10-4 A tree version of XYZ’s flight schedule

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:57 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



The FlightInfo Class
Writing a program to find a route from New York to Los Angeles requires a database that

contains the information about XYZ’s flights. Each entry in the database must contain the

departure and destination cities, the distance between them, and a flag that aids in backtracking.

This information is held in a class called FlightInfo, shown here:

// Flight information.

class FlightInfo {

String from;

String to;

int distance;

boolean skip; // used in backtracking

FlightInfo(String f, String t, int d) {

from = f;

to = t;

distance = d;

skip = false;

}

}

This class will be used by all the search techniques described in the remainder of the chapter.

The Depth-First Search
The depth-first search explores each possible path to its conclusion before another path is

tried. To understand exactly how this works, consider the tree that follows. F is the goal.

C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 2 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:58 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



A depth-first search traverses the graph in the following order: ABDBEBACF. If you are

familiar with trees, you recognize this type of search as an inorder tree traversal. That is,

the path goes left until a terminal node is reached or the goal is found. If a terminal node

is reached, the path backs up one level, goes right, and then left until either the goal or a

terminal node is encountered. This procedure is repeated until the goal is found or the last

node in the search space has been examined.

As you can see, a depth-first search is certain to find the goal because in the worst case it

degenerates into an exhaustive search. In this example, an exhaustive search would result

if G were the goal.

The depth-first approach is encapsulated within the Depth class, which begins like this:

class Depth {

final int MAX = 100; // maximum number of connections

// This array holds the flight information.

FlightInfo flights[] = new FlightInfo[MAX];

int numFlights = 0; // number of entries in flight array

Stack btStack = new Stack(); // backtrack stack

public static void main(String args[])

{

String to, from;

Depth ob = new Depth();

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

ob.setup();

try {

System.out.print("From? ");

from = br.readLine();

System.out.print("To? ");

to = br.readLine();

ob.isflight(from, to);

if(ob.btStack.size() != 0)

ob.route(to);

} catch (IOException exc) {

System.out.println("Error on input.");

}

}

3 2 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:58 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 2 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

An array of FlightInfo objects called flights is created, which holds the flight information.

The size of this array is set by use of the final variable MAX. The number of flights actually

stored in the array is held in numFlights. Note that it would have been possible to store the

flight information in one of Java Collections classes, such as in an ArrayList. Doing so

would allow arbitrarily sized lists of information. However, because we are storing information

about only a few flights, an array is used for the sake of simplicity and clarity.

The Stack object that will be used for backtracking is created, and a reference to it is

stored in btStack. As you will see, the backtrack stack is very important to all the search

techniques.

Inside main( ), the setup( ) method is called, which initializes the flight information. Next,

the user is prompted for the departure and destination cities. Then, isflight( ) is called to find a

flight or a set of connecting flights between the two cities, which in this example are New York

and Los Angeles. Finally, if a route between the two cities is found, it is displayed. Now, let’s

look at the various pieces.

The setup( ) method works by repeatedly calling the addFlight( ) method, which adds

a flight to the flights array. The value of numFlights is incremented with each added flight.

Thus, when setup( ) returns, numFlights is equal to the number of flights in the database.

The setup( ) and addFlight( ) methods are shown here:

// Initialize the flight database.

void setup()

{

addFlight("New York", "Chicago", 900);

addFlight("Chicago", "Denver", 1000);

addFlight("New York", "Toronto", 500);

addFlight("New York", "Denver", 1800);

addFlight("Toronto", "Calgary", 1700);

addFlight("Toronto", "Los Angeles", 2500);

addFlight("Toronto", "Chicago", 500);

addFlight("Denver", "Urbana", 1000);

addFlight("Denver", "Houston", 1000);

addFlight("Houston", "Los Angeles", 1500);

addFlight("Denver", "Los Angeles", 1000);

}

// Put flights into the database.

void addFlight(String from, String to, int dist)

{

if(numFlights < MAX) {

flights[numFlights] =

new FlightInfo(from, to, dist);

numFlights++;

}

else System.out.println("Flight database full.\n");

}

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:58 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



To find a route between New York and Los Angeles, several support methods are needed.

The first is match( ), which determines if there is a flight between two cities. If no such flight

exists, it returns zero; or if there is a flight, it returns the distance between the two cities. This

method is shown here:

/* If there is a flight between from and to,

return the distance of flight;

otherwise, return 0. */

int match(String from, String to)

{

for(int i=numFlights-1; i > -1; i--) {

if(flights[i].from.equals(from) &&

flights[i].to.equals(to) &&

!flights[i].skip)

{

flights[i].skip = true; // prevent reuse

return flights[i].distance;

}

}

return 0; // not found

}

The next support method is find( ). Given a departure city, find( ) searches the database

for any connection. If a connection is found, the FlightInfo object associated with that

connection is returned. Otherwise, null is returned. Thus, the difference between match( )

and find( ) is that match( ) determines if there is a flight between two specific cities,

whereas find( ) determines if there is a flight from a given city to any other city. The find( )

method follows:

// Given from, find any connection.

FlightInfo find(String from)

{

for(int i=0; i < numFlights; i++) {

if(flights[i].from.equals(from) &&

!flights[i].skip)

{

FlightInfo f = new FlightInfo(flights[i].from,

flights[i].to,

flights[i].distance);

flights[i].skip = true; // prevent reuse

return f;

}

}

3 2 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:58 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 2 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

return null;

}

In both match( ) and find( ), connections that have the skip field set to 1 are bypassed.

Also, if a connection is found, its skip field is set. This manages backtracking from dead

ends, preventing the same connections from being tried over and over again.

Now consider the code that actually finds the connecting flights. It is contained in the

isflight( ) method, the key routine in finding a route between two cities. It is called with

the names of the departure and destination cities.

// Determine if there is a route between from and to.

void isflight(String from, String to)

{

int dist;

FlightInfo f;

// See if at destination.

dist = match(from, to);

if(dist != 0) {

btStack.push(new FlightInfo(from, to, dist));

return;

}

// Try another connection.

f = find(from);

if(f != null) {

btStack.push(new FlightInfo(from, to, f.distance));

isflight(f.to, to);

}

else if(btStack.size() > 0) {

// Backtrack and try another connection.

f = (FlightInfo) btStack.pop();

isflight(f.from, f.to);

}

}

Let’s examine this method closely. First, the flight database is checked by match( ) to

see if there is a flight between from and to. If there is, the goal has been reached, the

connection is pushed onto the stack, and the method returns. Otherwise, it uses find( ) to

find a connection between from and any place else. The find( ) method returns the

FlightInfo object describing the connection, if one is found, or null if no connecting flights

are available. If there is such a flight, this connection is stored in f, the current flight is

pushed onto the backtrack stack, and isflight( ) is called recursively, with the city in f.to

becoming the new departure city. Otherwise, backtracking takes place. The previous node

is removed from the stack and isflight( ) is called recursively. This process continues until

the goal is found.

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:58 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



For example, if isflight( ) is called with New York and Chicago, the first if would succeed

and isflight( ) would terminate because there is a direct flight from New York to Chicago.

The situation is more complex when isflight( ) is called with New York and Calgary. In this

case, the first if would fail because there is no direct flight connecting these two cities. Next,

the second if is tried by attempting to find a connection between New York and any other

city. In this case, find( ) first finds the New York to Chicago connection, this connection is

pushed onto the backtrack stack, and isflight( ) is called recursively with Chicago as the starting

point. Unfortunately, there is no path from Chicago to Calgary and several false paths are

followed. Eventually, after several recursive calls to isflight( ) and substantial backtracking,

the connection from New York to Toronto is found, and Toronto connects to Calgary. This

causes isflight( ) to return, unraveling all recursive calls in the process. Finally, the original

call to isflight( ) returns. You might want to try adding println( ) statements in isflight( ) to

see precisely how it works with various departure and destination cities.

It is important to understand that isflight( ) does not actually return the solution—it

generates it. Upon exit from isflight( ), the backtrack stack contains the route between New

York and Calgary. That is, the solution is contained in btStack. Furthermore, the success or

failure of isflight( ) is determined by the state of the stack. An empty stack indicates failure;

otherwise, the stack holds a solution.

In general, backtracking is a crucial ingredient in AI-based search techniques. Backtracking

is accomplished through the use of recursion and a backtrack stack. Almost all backtracking

situations are stack-like in operation—that is, they are first in, last out. As a path is explored,

nodes are pushed onto the stack as they are encountered. At each dead end, the last node is

popped off the stack and a new path, from that point, is tried. This process continues until

either the goal is reached or all paths have been exhausted.

You need one more method, called route( ), to complete the entire program. It displays the

path and the total distance. The route( ) method is shown here:

// Show the route and total distance.

void route(String to)

{

Stack rev = new Stack();

int dist = 0;

FlightInfo f;

int num = btStack.size();

// Reverse the stack to display route.

for(int i=0; i < num; i++)

rev.push(btStack.pop());

for(int i=0; i < num; i++) {

f = (FlightInfo) rev.pop();

System.out.print(f.from + " to ");

dist += f.distance;

}

3 3 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:58 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



System.out.println(to);

System.out.println("Distance is " + dist);

}

Notice the use of a second stack called rev. The solution stored in btStack is in reverse

order, with the top of the stack holding the last connection and the bottom of the stack

holding the first connection. Thus, it must be reversed in order to display the connection in

the proper sequence. To put the solution into its proper order, the connections are popped

from btStack and pushed onto rev.

The entire depth-first search program follows:

// Find connections using a depth-first search.

import java.util.*;

import java.io.*;

// Flight information.

class FlightInfo {

String from;

String to;

int distance;

boolean skip; // used in backtracking

FlightInfo(String f, String t, int d) {

from = f;

to = t;

distance = d;

skip = false;

}

}

class Depth {

final int MAX = 100; // maximum number of connections

// This array holds the flight information.

FlightInfo flights[] = new FlightInfo[MAX];

int numFlights = 0; // number of entries in flight array

Stack btStack = new Stack(); // backtrack stack

public static void main(String args[])

{

String to, from;

Depth ob = new Depth();

BufferedReader br = new

C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 3 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:58 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



BufferedReader(new InputStreamReader(System.in));

ob.setup();

try {

System.out.print("From? ");

from = br.readLine();

System.out.print("To? ");

to = br.readLine();

ob.isflight(from, to);

if(ob.btStack.size() != 0)

ob.route(to);

} catch (IOException exc) {

System.out.println("Error on input.");

}

}

// Initialize the flight database.

void setup()

{

addFlight("New York", "Chicago", 900);

addFlight("Chicago", "Denver", 1000);

addFlight("New York", "Toronto", 500);

addFlight("New York", "Denver", 1800);

addFlight("Toronto", "Calgary", 1700);

addFlight("Toronto", "Los Angeles", 2500);

addFlight("Toronto", "Chicago", 500);

addFlight("Denver", "Urbana", 1000);

addFlight("Denver", "Houston", 1000);

addFlight("Houston", "Los Angeles", 1500);

addFlight("Denver", "Los Angeles", 1000);

}

// Put flights into the database.

void addFlight(String from, String to, int dist)

{

if(numFlights < MAX) {

flights[numFlights] =

new FlightInfo(from, to, dist);

numFlights++;

}

else System.out.println("Flight database full.\n");

3 3 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:58 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



}

// Show the route and total distance.

void route(String to)

{

Stack rev = new Stack();

int dist = 0;

FlightInfo f;

int num = btStack.size();

// Reverse the stack to display route.

for(int i=0; i < num; i++)

rev.push(btStack.pop());

for(int i=0; i < num; i++) {

f = (FlightInfo) rev.pop();

System.out.print(f.from + " to ");

dist += f.distance;

}

System.out.println(to);

System.out.println("Distance is " + dist);

}

/* If there is a flight between from and to,

return the distance of flight;

otherwise, return 0. */

int match(String from, String to)

{

for(int i=numFlights-1; i > -1; i--) {

if(flights[i].from.equals(from) &&

flights[i].to.equals(to) &&

!flights[i].skip)

{

flights[i].skip = true; // prevent reuse

return flights[i].distance;

}

}

return 0; // not found

}

// Given from, find any connection.

FlightInfo find(String from)

{

C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 3 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:58 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 3 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

for(int i=0; i < numFlights; i++) {

if(flights[i].from.equals(from) &&

!flights[i].skip)

{

FlightInfo f = new FlightInfo(flights[i].from,

flights[i].to,

flights[i].distance);

flights[i].skip = true; // prevent reuse

return f;

}

}

return null;

}

// Determine if there is a route between from and to.

void isflight(String from, String to)

{

int dist;

FlightInfo f;

// See if at destination.

dist = match(from, to);

if(dist != 0) {

btStack.push(new FlightInfo(from, to, dist));

return;

}

// Try another connection.

f = find(from);

if(f != null) {

btStack.push(new FlightInfo(from, to, f.distance));

isflight(f.to, to);

}

else if(btStack.size() > 0) {

// Backtrack and try another connection.

f = (FlightInfo) btStack.pop();

isflight(f.from, f.to);

}

}

}

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:58 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 3 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

Notice that main( ) prompts you for both the city of origin and the city of destination.

This means that you can use the program to find routes between any two cities. However, the

rest of this chapter assumes that New York is the origin and Los Angeles is the destination.

When run with New York as the origin and Los Angeles as the destination, the following

solution is displayed. As Figure 10-5 shows, this is indeed the first solution that would be

found by a depth-first search. It is also a fairly good solution.

From? New York

To? Los Angeles

New York to Chicago to Denver to Los Angeles

Distance is 2900

Figure 10-5 The depth-first path to a solution

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:59 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 3 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

An Analysis of the Depth-First Search
The depth-first approach found a good solution. Also, relative to this specific problem,

depth-first searching found this solution on its first try with no backtracking—this is very

good; but had the data been organized differently, finding a solution might have involved

considerable backtracking. Thus, the outcome of this example cannot be generalized.

Moreover, the performance of depth-first searches can be quite poor when a particularly long

branch with no solution at the end is explored. In this case, a depth-first search wastes time

not only exploring this chain but also backtracking to the goal.

The Breadth-First Search
The opposite of the depth-first search is the breadth-first search. In this method, each node on

the same level is checked before the search proceeds to the next deeper level. This traversal

method is shown here with C as the goal:

Although thinking in terms of a binary tree–structured search space makes it easy to

describe the actions of a breadth-first search, many search spaces, including our flight

example, are not binary trees. So precisely what constitutes “breadth” is a bit subjective in

that it is defined by the problem at hand. As it relates to our flight example, the breadth-first

approach is implemented by checking if any flight leaving the departure city connects to a

flight that reaches the destination. In other words, before advancing to another level, the

destinations of all connections of connecting flights are checked.

To make the route-seeking program perform a breadth-first search, you need to make an

alteration to isflight( ), as shown here:

/* Determine if there is a route between from and to using

breadth-first search. */

void isflight(String from, String to)

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:07:59 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 3 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

{

int dist, dist2;

FlightInfo f;

// This stack is needed by the breadth-first search.

Stack resetStck = new Stack();

// See if at destination.

dist = match(from, to);

if(dist != 0) {

btStack.push(new FlightInfo(from, to, dist));

return;

}

/* Following is the first part of the breadth-first

modification.  It checks all connecting flights

from a specified node. */

while((f = find(from)) != null) {

resetStck.push(f);

if((dist = match(f.to, to)) != 0) {

resetStck.push(f.to);

btStack.push(new FlightInfo(from, f.to, f.distance));

btStack.push(new FlightInfo(f.to, to, dist));

return;

}

}

/* The following code resets the skip fields set by

preceding while loop. This is also part of the

breadth-first modification. */

int i = resetStck.size();

for(; i!=0; i--)

resetSkip((FlightInfo) resetStck.pop());

// Try another connection.

f = find(from);

if(f != null) {

btStack.push(new FlightInfo(from, to, f.distance));

isflight(f.to, to);

}

else if(btStack.size() > 0) {

// Backtrack and try another connection.

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:00 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 3 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

f = (FlightInfo) btStack.pop();

isflight(f.from, f.to);

}

}

Two changes have been made. First, the while loop checks all flights leaving from the

departure city (from) to see if they connect with flights that arrive at the destination city.

Second, if the destination is not found, the skip fields of those connecting flights are cleared

by calling resetSkip( ). The connections that need to be reset are stored on their own stack,

called resetStck, which is local to isflight( ). Resetting the skip flags is necessary to enable

alternative paths that might involve those connections.

The resetSkip( ) method is shown here:

// Reset skip field of specified flight.

void resetSkip(FlightInfo f) {

for(int i=0; i< numFlights; i++)

if(flights[i].from.equals(f.from) &&

flights[i].to.equals(f.to))

flights[i].skip = false;

}

To try the breadth-first search, substitute the new version of isflight( ) into the preceding

search program and then add the resetSkip( ) method. When run, it produces the following

solution:

From? New York

To? Los Angeles

New York to Toronto to Los Angeles

Distance is 3000

Figure 10-6 shows the breadth-first path to the solution.

An Analysis of the Breadth-First Search
In this example, the breadth-first search performed fairly well, finding a reasonable solution.

As before, this result cannot be generalized because the first path to be found depends on the

physical organization of the information. The example does illustrate, however, how depth-first

and breadth-first searches often find different paths through the same search space.

Breadth-first searching works well when the goal is not buried too deeply in the search

space. It works poorly when the goal is several layers deep. In this case, a breadth-first

search expends substantial effort during the backtrack stage.

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:00 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 3 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

Adding Heuristics
Neither the depth-first nor the breadth-first search attempts to make any educated guesses

about whether one node in the search space is closer to the goal than another. Instead, they

simply move from one node to the next using a prescribed pattern until the goal is finally

found. This may be the best you can do for some situations, but often a search space contains

information that you can use to increase the probability that a search will reach its goal faster.

To take advantage of such information, you must add heuristic capabilities to the search.

Heuristics are simply rules that increase the likelihood that a search will proceed in the

correct direction. For example, imagine that you are lost in the woods and need a drink of

water. The woods are so thick that you cannot see far ahead, and the trees are too big to climb

Figure 10-6 The breadth-first path to a solution

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:00 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



to get a look around. However, you know that rivers, streams, and ponds are most likely in

valleys; that animals frequently make paths to their watering places; that when you are near

water it is possible to “smell” it; and that you can hear running water. So, you begin by

moving downhill because water is unlikely to be uphill. Next, you come across a deer trail

that also runs downhill. Knowing that this may lead to water, you follow it. You begin to hear

a slight rushing off to your left. Knowing that this may be water, you cautiously move in that

direction. As you move, you begin to detect the increased humidity in the air; you can smell

the water. Finally, you find a stream and have your drink. In this situation, the heuristic

information used to find the water did not guarantee success, but it did increase the probability

of an early success. In general, heuristics improve the odds in favor of quickly finding a goal.

Most often, heuristic search methods are based on maximizing or minimizing some constraint.

In the problem of scheduling a flight from New York to Los Angeles, there are two possible

constraints that a passenger may want to minimize. The first is the number of connections

that have to be made. The second is the length of the route. Remember, the shortest route

does not necessarily imply the fewest connections, or vice versa. In this section, two heuristic

searches are developed. The first minimizes the number of connections. The second minimizes

the length of the route. Both heuristic searches are built on the depth-first search framework.

The Hill-Climbing Search
A search algorithm that attempts to find a route that minimizes the number of connections

uses the heuristic that the longer the length of the flight, the greater the likelihood that it takes

the traveler closer to the destination; therefore, the number of connections is minimized. In

the language of AI, this is an example of hill climbing.

The hill-climbing algorithm chooses as its next step the node that appears to place it closest

to the goal (that is, farthest away from the current position). It derives its name from the

analogy of a hiker being lost in the dark, halfway up a mountain. Assuming that the hiker’s

camp is at the top of the mountain, even in the dark the hiker knows that each step that goes

up is a step in the right direction.

Working only with the information contained in the flight-scheduling database, here

is how to incorporate the hill-climbing heuristic into the routing program: Choose the

connecting flight that is as far away as possible from the current position in the hope that

it will be closer to the destination. To do this, modify the find( ) routine, as shown here:

// Given from, find the farthest away connection.

FlightInfo find(String from)

{

int pos = -1;

int dist = 0;

for(int i=0; i < numFlights; i++) {

if(flights[i].from.equals(from) &&

!flights[i].skip)

{

// Use the longest flight.

3 4 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:01 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



if(flights[i].distance > dist) {

pos = i;

dist = flights[i].distance;

}

}

}

if(pos != -1) {

flights[pos].skip = true; // prevent reuse

FlightInfo f = new FlightInfo(flights[pos].from,

flights[pos].to,

flights[pos].distance);

return f;

}

return null;

}

The find( ) routine now searches the entire database, looking for the connection that is

farthest away from the departure city.

The entire hill-climbing program follows:

// Find connections using hill climbing.

import java.util.*;

import java.io.*;

// Flight information.

class FlightInfo {

String from;

String to;

int distance;

boolean skip; // used in backtracking

FlightInfo(String f, String t, int d) {

from = f;

to = t;

distance = d;

skip = false;

}

}

class Hill {

final int MAX = 100;

// This array holds the flight information.

C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 4 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:01 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



FlightInfo flights[] = new FlightInfo[MAX];

int numFlights = 0; // number of entries in flight array

Stack btStack = new Stack(); // backtrack stack

public static void main(String args[])

{

String to, from;

Hill ob = new Hill();

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

ob.setup();

try {

System.out.print("From? ");

from = br.readLine();

System.out.print("To? ");

to = br.readLine();

ob.isflight(from, to);

if(ob.btStack.size() != 0)

ob.route(to);

} catch (IOException exc) {

System.out.println("Error on input.");

}

}

// Initialize the flight database.

void setup()

{

addFlight("New York", "Chicago", 900);

addFlight("Chicago", "Denver", 1000);

addFlight("New York", "Toronto", 500);

addFlight("New York", "Denver", 1800);

addFlight("Toronto", "Calgary", 1700);

addFlight("Toronto", "Los Angeles", 2500);

addFlight("Toronto", "Chicago", 500);

addFlight("Denver", "Urbana", 1000);

addFlight("Denver", "Houston", 1000);

addFlight("Houston", "Los Angeles", 1500);

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

3 4 2 T h e A r t O f J a v a

ApDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:01 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



addFlight("Denver", "Los Angeles", 1000);

}

// Put flights into the database.

void addFlight(String from, String to, int dist)

{

if(numFlights < MAX) {

flights[numFlights] =

new FlightInfo(from, to, dist);

numFlights++;

}

else System.out.println("Flight database full.\n");

}

// Show the route and total distance.

void route(String to)

{

Stack rev = new Stack();

int dist = 0;

FlightInfo f;

int num = btStack.size();

// Reverse the stack to display route.

for(int i=0; i < num; i++)

rev.push(btStack.pop());

for(int i=0; i < num; i++) {

f = (FlightInfo) rev.pop();

System.out.print(f.from + " to ");

dist += f.distance;

}

System.out.println(to);

System.out.println("Distance is " + dist);

}

/* If there is a flight between from and to,

return the distance of flight;

otherwise, return 0. */

int match(String from, String to)

{

for(int i=numFlights-1; i > -1; i--) {

if(flights[i].from.equals(from) &&

flights[i].to.equals(to) &&

C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 4 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:01 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



!flights[i].skip)

{

flights[i].skip = true; // prevent reuse

return flights[i].distance;

}

}

return 0; // not found

}

// Given from, find the farthest away connection.

FlightInfo find(String from)

{

int pos = -1;

int dist = 0;

for(int i=0; i < numFlights; i++) {

if(flights[i].from.equals(from) &&

!flights[i].skip)

{

// Use the longest flight.

if(flights[i].distance > dist) {

pos = i;

dist = flights[i].distance;

}

}

}

if(pos != -1) {

flights[pos].skip = true; // prevent reuse

FlightInfo f = new FlightInfo(flights[pos].from,

flights[pos].to,

flights[pos].distance);

return f;

}

return null;

}

// Determine if there is a route between from and to.

void isflight(String from, String to)

{

int dist;

FlightInfo f;

3 4 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:01 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// See if at destination.

dist = match(from, to);

if(dist != 0) {

btStack.push(new FlightInfo(from, to, dist));

return;

}

// Try another connection.

f = find(from);

if(f != null) {

btStack.push(new FlightInfo(from, to, f.distance));

isflight(f.to, to);

}

else if(btStack.size() > 0) {

// Backtrack and try another connection.

f = (FlightInfo) btStack.pop();

isflight(f.from, f.to);

}

}

}

When the program is run, the solution is

From? New York

To? Los Angeles

New York to Denver to Los Angeles

Distance is 2800

This is quite good! The route contains the minimal number of stops on the way (only one),

and it is the shortest route. Thus, it found the best possible route.

However, if the Denver to Los Angeles connection did not exist, the solution would not

be quite so good. It would be New York to Denver to Houston to Los Angeles—a distance

of 4300 miles! In this case, the solution would climb a “false peak,” because the connection

to Houston would not take us closer to the goal of Los Angeles. Figure 10-7 shows the first

solution as well as the path to the false peak.

An Analysis of Hill Climbing
Actually, hill climbing provides fairly good solutions in many circumstances because it tends

to reduce the number of nodes that need to be visited before a solution is found. However, it

can suffer from three maladies. First, there is the problem of false peaks, as just described.

In this case, extensive backtracking may result. The second problem relates to plateaus, a

situation in which all next steps look equally good (or bad). In this case, hill climbing is no

better than depth-first searching. The final problem is that of a ridge. In this case, hill climbing

really performs poorly because the algorithm causes the ridge to be crossed several times as

C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 4 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:01 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 4 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

backtracking occurs. In spite of these potential troubles, hill climbing often increases the

probability of finding a good solution.

The Least-Cost Search
The opposite of a hill-climbing search is a least-cost search. This strategy is similar to standing

in the middle of a street on a big hill while wearing roller skates. You have the definite feeling

that it’s a lot easier to go down rather than up! In other words, a least-cost search takes the

path of least resistance.

Applying a least-cost search to the flight-scheduling problem implies that the shortest

connecting flight is taken in all cases so that the route found has a good chance of covering

the shortest distance. Unlike hill climbing, which attempts to minimize the number of

connections, a least-cost search attempts to minimize the number of miles.

Figure 10-7 The hill-climbing path to a solution and to a false peak

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:01 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



To use a least-cost search, you must again alter find( ), as shown here:

// Given from, find closest connection.

FlightInfo find(String from)

{

int pos = -1;

int dist = 10000; // longer than longest route

for(int i=0; i < numFlights; i++) {

if(flights[i].from.equals(from) &&

!flights[i].skip)

{

// Use the shortest flight.

if(flights[i].distance < dist) {

pos = i;

dist = flights[i].distance;

}

}

}

if(pos != -1) {

flights[pos].skip = true; // prevent reuse

FlightInfo f = new FlightInfo(flights[pos].from,

flights[pos].to,

flights[pos].distance);

return f;

}

return null;

}

Using this version of find( ), the solution is

From? New York

To? Los Angeles

New York to Toronto to Los Angeles

Distance is 3000

As you can see, the search found a good route—not the best, but acceptable. Figure 10-8

shows the least-cost path to the goal.

An Analysis of the Least-Cost Search
Least-cost searches and hill climbing have the same advantages and disadvantages, but in

reverse. There can be false valleys, lowlands, and gorges. In this specific case, the least-cost

search worked about as well as the hill-climbing search.

C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 4 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:02 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Finding Multiple Solutions
Sometimes it is valuable to find several solutions to the same problem. This is not the same

as finding all solutions (an exhaustive search). Instead, multiple solutions offer a representative

sample of the solutions present in the search space.

There are several ways to generate multiple solutions, but only two are examined here.

The first is path removal, and the second is node removal. As their names imply, generating

multiple solutions without redundancy requires that solutions already found be removed

from the system. Remember that neither of these techniques attempts to find all solutions.

Finding all solutions is a different problem that usually is not attempted because it implies an

exhaustive search.

3 4 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

Figure 10-8 The least-cost path to a solution

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:02 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 4 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

Path Removal
The path-removal method of generating multiple solutions removes all nodes from the database

that form the current solution and then attempts to find another solution. In essence, path

removal prunes limbs from the tree. To find multiple solutions by using path removal, you

just need to alter main( ) in the depth-first search, as shown here, and change the name of the

search class to PathR:

public static void main(String args[])

{

String to, from;

PathR ob = new PathR();

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

boolean done = false;

ob.setup();

try {

System.out.print("From? ");

from = br.readLine();

System.out.print("To? ");

to = br.readLine();

do {

ob.isflight(from, to);

if(ob.btStack.size() == 0) done = true;

else {

ob.route(to);

ob.btStack = new Stack();

}

} while(!done);

} catch (IOException exc) {

System.out.println("Error on input.");

}

}

Here, a do loop is added that iterates until the backtrack stack is empty. Recall that when

the backtrack stack is empty, no solution (in this case, no additional solution) has been found.

No other modifications are needed because any connection that is part of a solution will have

its skip field marked. Consequently, such a connection can no longer be found by find( ) and

cannot be part of the next solution, nor can it be refound. Of course, a new backtrack stack

must be obtained to hold the next solution.

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:02 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 5 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

The path-removal method finds the following solutions:

From? New York

To? Los Angeles

New York to Chicago to Denver to Los Angeles

Distance is 2900

New York to Toronto to Los Angeles

Distance is 3000

New York to Denver to Houston to Los Angeles

Distance is 4300

The search found the three solutions. Notice, however, that none are the best solution.

Node Removal
The second way to force the generation of additional solutions, node removal, simply removes

the last node in the current solution path and tries again. To do this, main( ) is changed so

that it removes the last connection from the flight database, clears all the skip fields, and

obtains a new, empty stack that is used to hold the next solution. The last connection of

the previous solution is removed from the flight database by using a new method called

remove( ). All the skip fields are reset by using another new method called resetAllSkip( ).

The updated main( ) method, along with resetAllSkip( ) and remove( ), are shown here:

public static void main(String args[])

{

String to, from;

NodeR ob = new NodeR();

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

boolean done = false;

FlightInfo f;

ob.setup();

try {

System.out.print("From? ");

from = br.readLine();

System.out.print("To? ");

to = br.readLine();

do {

ob.isflight(from, to);

if(ob.btStack.size() == 0) done = true;

else {

// Save the flight on top-of-stack.

f = (FlightInfo) ob.btStack.peek();

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:02 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 5 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

ob.route(to); // display current route

ob.resetAllSkip(); // reset all skip fields

/* Remove last flight in previous route

from the flight database. */

ob.remove(f);

// Reset the backtrack stack.

ob.btStack = new Stack();

}

} while(!done);

} catch (IOException exc) {

System.out.println("Error on input.");

}

}

// Reset all skip fields.

void resetAllSkip() {

for(int i=0; i< numFlights; i++)

flights[i].skip = false;

}

// Remove a connection.

void remove(FlightInfo f) {

for(int i=0; i< numFlights; i++)

if(flights[i].from.equals(f.from) &&

flights[i].to.equals(f.to))

flights[i].from = "";

}

As you can see, removing a connection is accomplished by assigning a zero-length

string to the name of the departure city. Because so many changes are required, the entire

node-removal program is shown here for the sake of clarity:

// Find multiple connections using node removal.

import java.util.*;

import java.io.*;

// Flight information.

class FlightInfo {

String from;

String to;

int distance;

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:02 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 5 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

boolean skip; // used in backtracking

FlightInfo(String f, String t, int d) {

from = f;

to = t;

distance = d;

skip = false;

}

}

class NodeR {

final int MAX = 100;

// This array holds the flight information.

FlightInfo flights[] = new FlightInfo[MAX];

int numFlights = 0; // number of entries in flight array

Stack btStack = new Stack(); // backtrack stack

public static void main(String args[])

{

String to, from;

NodeR ob = new NodeR();

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

boolean done = false;

FlightInfo f;

ob.setup();

try {

System.out.print("From? ");

from = br.readLine();

System.out.print("To? ");

to = br.readLine();

do {

ob.isflight(from, to);

if(ob.btStack.size() == 0) done = true;

else {

// Save the flight on top-of-stack.

f = (FlightInfo) ob.btStack.peek();

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:02 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 5 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

ob.route(to); // display current route

ob.resetAllSkip(); // reset all skip fields

/* Remove last flight in previous route

from the flight database. */

ob.remove(f);

// Reset the backtrack stack.

ob.btStack = new Stack();

}

} while(!done);

} catch (IOException exc) {

System.out.println("Error on input.");

}

}

// Initialize the flight database.

void setup()

{

addFlight("New York", "Chicago", 900);

addFlight("Chicago", "Denver", 1000);

addFlight("New York", "Toronto", 500);

addFlight("New York", "Denver", 1800);

addFlight("Toronto", "Calgary", 1700);

addFlight("Toronto", "Los Angeles", 2500);

addFlight("Toronto", "Chicago", 500);

addFlight("Denver", "Urbana", 1000);

addFlight("Denver", "Houston", 1000);

addFlight("Houston", "Los Angeles", 1500);

addFlight("Denver", "Los Angeles", 1000);

}

// Put flights into the database.

void addFlight(String from, String to, int dist)

{

if(numFlights < MAX) {

flights[numFlights] =

new FlightInfo(from, to, dist);

numFlights++;

}

else System.out.println("Flight database full.\n");

}

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:03 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Show the route and total distance.

void route(String to)

{

Stack rev = new Stack();

int dist = 0;

FlightInfo f;

int num = btStack.size();

// Reverse the stack to display route.

for(int i=0; i < num; i++)

rev.push(btStack.pop());

for(int i=0; i < num; i++) {

f = (FlightInfo) rev.pop();

System.out.print(f.from + " to ");

dist += f.distance;

}

System.out.println(to);

System.out.println("Distance is " + dist);

}

/* If there is a flight between from and to,

return the distance of flight;

otherwise, return 0. */

int match(String from, String to)

{

for(int i=numFlights-1; i > -1; i--) {

if(flights[i].from.equals(from) &&

flights[i].to.equals(to) &&

!flights[i].skip)

{

flights[i].skip = true;

return flights[i].distance;

}

}

return 0; // not found

}

// Given from, find any connection.

FlightInfo find(String from)

{

for(int i=0; i < numFlights; i++) {

if(flights[i].from.equals(from) &&

3 5 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:03 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



!flights[i].skip)

{

FlightInfo f = new FlightInfo(flights[i].from,

flights[i].to,

flights[i].distance);

flights[i].skip = true; // prevent reuse

return f;

}

}

return null;

}

// Determine if there is a route between from and to.

void isflight(String from, String to)

{

int dist;

FlightInfo f;

// See if at destination.

dist = match(from, to);

if(dist != 0) {

btStack.push(new FlightInfo(from, to, dist));

return;

}

// Try another connection.

f = find(from);

if(f != null) {

btStack.push(new FlightInfo(from, to, f.distance));

isflight(f.to, to);

}

else if(btStack.size() > 0) {

// Backtrack and try another connection.

f = (FlightInfo) btStack.pop();

isflight(f.from, f.to);

}

}

// Reset all skip fields.

void resetAllSkip() {

for(int i=0; i< numFlights; i++)

flights[i].skip = false;

}

C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 5 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:03 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Remove a connection.

void remove(FlightInfo f) {

for(int i=0; i< numFlights; i++)

if(flights[i].from.equals(f.from) &&

flights[i].to.equals(f.to))

flights[i].from = "";

}

}

This program finds the following routes:

From? New York

To? Los Angeles

New York to Chicago to Denver to Los Angeles

Distance is 2900

New York to Chicago to Denver to Houston to Los Angeles

Distance is 4400

New York to Toronto to Los Angeles

Distance is 3000

In this case, the second solution is the worst possible route, but two fairly good solutions

are also found. Notice that the set of solutions found by the node-removal method differs

from that found by the path-removal approach. Different approaches to generating multiple

solutions can often yield different results.

Finding the “Optimal” Solution
All of the previous search techniques were concerned, first and foremost, with finding

a solution—any solution. As you saw with the heuristic searches, efforts can be made to

improve the likelihood of finding a good solution; but no attempt was made to ensure that an

optimal solution was found. However, at times you may want only the optimal solution. Keep

in mind that “optimal,” as it is used here, simply means the best route that can be found by

using one of the multiple-solution generation techniques—it may not actually be the best

solution. (Finding the best solution would, of course, require the prohibitively time-consuming

exhaustive search.)

Before leaving the well-used flight scheduling example, consider a program that finds the

optimal route given the constraint that distance is to be minimized. To do this, the program

employs the path-removal method of generating multiple solutions and uses a least-cost

search to minimize distance. The key to finding the shortest path is to keep a solution that is

shorter than the previously generated solution. When there are no more solutions to generate,

the optimal solution remains.

The entire “optimal solution” program is shown here. Notice that the program creates an

additional stack, called optimal, which holds the optimal solution, and an instance variable,

called minDist, which keeps track of the distance. There are also changes to route( ) and

some minor modifications to main( ).

3 5 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:03 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 5 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

// Find "optimal" solution using least-cost.

import java.util.*;

import java.io.*;

// Flight information.

class FlightInfo {

String from;

String to;

int distance;

boolean skip; // used in backtracking

FlightInfo(String f, String t, int d) {

from = f;

to = t;

distance = d;

skip = false;

}

}

class Optimal {

final int MAX = 100;

// This array holds the flight information.

FlightInfo flights[] = new FlightInfo[MAX];

int numFlights = 0; // number of entries in flight array

Stack btStack = new Stack(); // backtrack stack

Stack optimal; // holds optimal solution

int minDist = 10000;

public static void main(String args[])

{

String to, from;

Optimal ob = new Optimal();

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

boolean done = false;

FlightInfo f;

ob.setup();

try {

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:03 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



System.out.print("From? ");

from = br.readLine();

System.out.print("To? ");

to = br.readLine();

do {

ob.isflight(from, to);

if(ob.btStack.size() == 0) done = true;

else {

ob.route(to);

ob.btStack = new Stack();

}

} while(!done);

// Display optimal solution.

if(ob.optimal != null) {

System.out.println("Optimal solution is: ");

int num = ob.optimal.size();

for(int i=0; i < num; i++) {

f = (FlightInfo) ob.optimal.pop();

System.out.print(f.from + " to ");

}

System.out.println(to);

System.out.println("Distance is " + ob.minDist);

}

} catch (IOException exc) {

System.out.println("Error on input.");

}

}

// Initialize the flight database.

void setup()

{

addFlight("New York", "Chicago", 900);

addFlight("Chicago", "Denver", 1000);

addFlight("New York", "Toronto", 500);

addFlight("New York", "Denver", 1800);

addFlight("Toronto", "Calgary", 1700);

addFlight("Toronto", "Los Angeles", 2500);

addFlight("Toronto", "Chicago", 500);

addFlight("Denver", "Urbana", 1000);

addFlight("Denver", "Houston", 1000);

addFlight("Houston", "Los Angeles", 1500);

3 5 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:03 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



addFlight("Denver", "Los Angeles", 1000);

}

// Put flights into the database.

void addFlight(String from, String to, int dist)

{

if(numFlights < MAX) {

flights[numFlights] =

new FlightInfo(from, to, dist);

numFlights++;

}

else System.out.println("Flight database full.\n");

}

// Save shortest route.

void route(String to)

{

int dist = 0;

FlightInfo f;

int num = btStack.size();

Stack optTemp = new Stack();

for(int i=0; i < num; i++) {

f = (FlightInfo) btStack.pop();

optTemp.push(f); // save route

dist += f.distance;

}

// If shorter, keep this route

if(minDist > dist) {

optimal = optTemp;

minDist = dist;

}

}

/* If there is a flight between from and to,

return the distance of flight;

otherwise, return 0. */

int match(String from, String to)

{

for(int i=numFlights-1; i > -1; i--) {

if(flights[i].from.equals(from) &&

flights[i].to.equals(to) &&

!flights[i].skip)

C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 5 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:03 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 6 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

{

flights[i].skip = true; // prevent reuse

return flights[i].distance;

}

}

return 0; // not found

}

// Given from, find any connection using least-cost.

FlightInfo find(String from)

{

int pos = -1;

int dist = 10000; // longer than longest route

for(int i=0; i < numFlights; i++) {

if(flights[i].from.equals(from) &&

!flights[i].skip)

{

// Use the shortest flight.

if(flights[i].distance < dist) {

pos = i;

dist = flights[i].distance;

}

}

}

if(pos != -1) {

flights[pos].skip = true; // prevent reuse

FlightInfo f = new FlightInfo(flights[pos].from,

flights[pos].to,

flights[pos].distance);

return f;

}

return null;

}

// Determine if there is a route between from and to.

void isflight(String from, String to)

{

int dist;

FlightInfo f;

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:03 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 6 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

// See if at destination.

dist = match(from, to);

if(dist != 0) {

btStack.push(new FlightInfo(from, to, dist));

return;

}

// Try another connection.

f = find(from);

if(f != null) {

btStack.push(new FlightInfo(from, to, f.distance));

isflight(f.to, to);

}

else if(btStack.size() > 0) {

// Backtrack and try another connection.

f = (FlightInfo) btStack.pop();

isflight(f.from, f.to);

}

}

}

The output from the program is shown here:

From? New York

To? Los Angeles

Optimal solution is:

New York to Chicago to Denver to Los Angeles

Distance is 2900

In this case, the “optimal” solution is not quite the best one, but it is still a very good one.

As explained, when using AI-based searches, the best solution to be found by one search

technique will not always be the best solution that exists. You might want to try substituting

another search technique in the preceding program, observing what type of “optimal”

solution it finds.

The one inefficiency in the preceding method is that all paths are followed to their

conclusion. An improved method would stop following a path as soon as the length equaled

or exceeded the current minimum. You might want to modify this program to accommodate

such an enhancement.

Back to the Lost Keys
To conclude this chapter on problem solving, it seems only fitting to provide a Java program

that finds the lost car keys described in the first example. The accompanying code employs

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:03 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 6 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

the same techniques used in the problem of finding a route between two cities, so the program

is presented without further explanation.

// Find the lost keys!

import java.util.*;

import java.io.*;

// Room information.

class RoomInfo {

String from;

String to;

boolean skip;

RoomInfo(String f, String t) {

from = f;

to = t;

skip = false;

}

}

class Keys {

final int MAX = 100;

// This array holds the room information.

RoomInfo room[] = new RoomInfo[MAX];

int numRooms = 0; // number of rooms

Stack btStack = new Stack(); // backtrack stack

public static void main(String args[])

{

String to, from;

Keys ob = new Keys();

ob.setup();

from = "front_door";

to = "keys";

ob.iskeys(from, to);

if(ob.btStack.size() != 0)

ob.route(to);

}

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:03 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 6 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

// Initialize the room database.

void setup()

{

addRoom("front_door", "lr");

addRoom("lr", "bath");

addRoom("lr", "hall");

addRoom("hall", "bd1");

addRoom("hall", "bd2");

addRoom("hall", "mb");

addRoom("lr", "kitchen");

addRoom("kitchen", "keys");

}

// Put rooms into the database.

void addRoom(String from, String to)

{

if(numRooms < MAX) {

room[numRooms] = new RoomInfo(from, to);

numRooms++;

}

else System.out.println("Room database full.\n");

}

// Show the route.

void route(String to)

{

Stack rev = new Stack();

RoomInfo r;

int num = btStack.size();

// Reverse the stack to display path.

for(int i=0; i < num; i++)

rev.push(btStack.pop());

for(int i=0; i < num; i++) {

r = (RoomInfo) rev.pop();

System.out.print(r.from + " to ");

}

System.out.println(to);

}

/* If there is a path between from and to,

return true, otherwise return false. */

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:03 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



3 6 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

boolean match(String from, String to)

{

for(int i=numRooms-1; i > -1; i--) {

if(room[i].from.equals(from) &&

room[i].to.equals(to) &&

!room[i].skip)

{

room[i].skip = true; // prevent reuse

return true;

}

}

return false; // not found

}

// Given from, find any path.

RoomInfo find(String from)

{

for(int i=0; i < numRooms; i++) {

if(room[i].from.equals(from) &&

!room[i].skip)

{

RoomInfo r = new RoomInfo(room[i].from,

room[i].to);

room[i].skip = true; // prevent reuse

return r;

}

}

return null;

}

// Determine if there is a path between from and to.

void iskeys(String from, String to)

{

int dist;

RoomInfo r;

// See if at destination.

if(match(from, to)) {

btStack.push(new RoomInfo(from, to));

return;

}

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:03 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



// Try another connection.

r = find(from);

if(r != null) {

btStack.push(new RoomInfo(from, to));

iskeys(r.to, to);

}

else if(btStack.size() > 0) {

// Backtrack and try another connection.

r = (RoomInfo) btStack.pop();

iskeys(r.from, r.to);

}

}

}

C h a p t e r 1 0 : A I - B a s e d P r o b l e m S o l v i n g 3 6 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 10

P:\010Comp\ApDev\971-3\ch10.vp
Tuesday, July 08, 2003 9:08:03 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



This page intentionally left blank 



Index
A
Abstract Window Toolkit (AWT), 7, 236, 250

AbstractTableModel class, 104, 141

ActionEvent class, 119

ActionListener, 115, 116, 119, 154, 227, 268, 278

activation.jar file, 164

addHyperlinkListener( ), 219

AI-based problem solving, 318–365

using breadth-first search, 336–338, 339

using depth-first search, 325–336, 339

and finding multiple solutions, 348–356

and finding the “optimal” solution, 356–361

using hill-climbing search, 340–346

using least-cost search, 346–348

See also Search(es), A-I based

Annuity applet, 296–300

Annuity for a given investment, maximum

applet for finding, 301–305

formula to compute, 301

Annuity, initial investment needed for desired

applet for finding, 296–300

formula to calculate, 296

Apache Software Foundation, 310

Applet class, 278

Applets, 6, 7–8

ArrayList class, 143, 191, 199, 228, 276, 327

Artificial-intelligence-based problem solving. See AI-based

problem solving

Assignment in Small BASIC, 75–76

B
BASIC, 41

Small. See Small BASIC

Beans, 8

Bell curve, 237

Browsers, Web. See Web browser(s)

Bytecode, 6, 40, 42

C
Calculator applet, 36–38

Character class, 205

CharSequence interface, 204

Class hierarchies, 5

Client/server transactions

in e-mail, 122–124

in Internet downloads, 92–93, 122

Coefficient of determination, 244

Collection Framework, 168

Combinatorial explosions, 320–321

Combinatorics, 320

compile( ) factory method, 204, 211

Compilers vs. interpreters, 40

Component class, 104

Component software, 5, 8

ComponentAdapter class, 257

ConnectDialog class, 125, 126–132, 159

Correlation coefficient, 243–246

formula for finding, 244

Crawler, Web. See Web crawler

D
DataWin class, 268, 271–272

DefaultTableModel class, 191, 194

Depth class, 326–327

Dialog box and GUI programming, modal, 131

Dimension class, 259

Disallow statements, 170

Double type wrapper, 3

Double.parseDouble( ), 287

Download class, 93, 94–103

Download Manager, 92–120

compiling and running, 119

enhancing, suggestions for, 120

overview of, 93

DownloadingDialog class, 125, 132–133, 159–160

DownloadManager class, 93, 109–119

Downloads, Internet

operation of, 92–93

resuming interrupted, 92

Web page, 202

DownloadsTableModel class, 93, 104–108

E
E-mail

client, development of simple, 125–165

overview of sending and receiving, 122–124

E-mail Client application

compiling and running, 163–164

enhancements, suggestions for, 165

EmailClient class, 125, 126, 145–163

END statement (Small BASIC), 87

Error handling in Java, 5

Exceptions, 5

367

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Index

P:\010Comp\ApDev\971-3\index.vp
Tuesday, July 08, 2003 9:09:46 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Expressions

parsing, 10–38

production rules of, 12–13

as recursive data structures, 12

regular. See Regular expressions

in Small BASIC, 64–65

tokenizing, 13–16

expunge( ), 155

F
FetchProfile class, 162

Financial calculations, applets and servlets for, 278–316

find( ), 204, 206

FlightInfo class, 325, 327

Folder class, 125, 155, 161

Font metrics, obtaining, 191–192

FOR loop (Small BASIC), 82–85

Frame class, 251, 257, 259, 268

FTP (File Transfer Protocol), 92–93

FutVal applet, 287–291

G
Garbage collection, 3–4

getDescription( ), 219

getEventType( ), 219–220

getSourceElement( ), 219

getToken( )

for Parser class, 13, 14–16, 24

for Small BASIC parser, 64, 65–69. 76

getURL( ), 219, 233

GOSUB statement (Small BASIC), 42, 85–87

GOTO statement (Small BASIC), 79–81, 85

Graphing data, 250

Graphs class, 251–263

Grid bag layout, advantages to using a, 283

GridBagConstraints class, 190, 283

example using, 283–285

GridBagLayout class, 190, 283

group( ), 204, 205, 206

GUI-based programs, 7, 236, 250

H
Heuristics, 319, 339–340

HTML

anchor tag, 169

and e-mail messages, 122, 163

Java’s built-in support for, 218, 220

rendering, 218–219

HTMLDocument class, 233

HTMLFrameHyperlinkEvent class, 233

HTTP (Hypertext Transfer Protocol), 92–93, 100

HttpURLConnection class, 99

Hyperlink events, handling, 218, 219–220

HyperlinkEvent class, 218, 219–220, 227, 233

HyperlinkListener interface, 218, 219, 220, 232

hyperlinkUpdate( ), 219, 232–233

I
IF statement (Small BASIC), 82

IMAP (Internet Message Access Protocol), 123–124, 161

InitInv applet, 292–295

INPUT statement (Small BASIC), 65, 78–79

Integer type wrapper, 3

Integer.parseInt( ), 192

Interface, 5–6

interface keyword, 5

Internet

downloads. See Downloads, Internet

and Java, 2, 6, 7–8, 10, 92

Interpreter(s)

advantages of, 40

Small BASIC. See Small BASIC interpreter

source code vs. pseudo-code, 42

vs. compilers, 40

Investment, future value of an

applet for finding, 287–291

formula to compute, 287

Investment required to achieve a future value

applet for finding, 292–295

formula to compute, 292

ItemListener, 268

J
Jakarta Project, 310

Java 2 Software Development Kit, Enterprise Edition

(J2SDKEE), 124

Java API, 2, 6–7, 92

Java Community Process (JCP), 8

Java library, 6–7

Java, overview of, 2–8

Java runtime system, 40, 42

Java Servlet Development Kit, 310

Java Virtual Machine (JVM), 6, 7, 40

java.awt, 7

java.net, 7

java.util.regex, 204, 214

JavaBeans Activation Framework (JAF), 124, 163, 164

JavaMail, 122, 124–125, 163, 164

connection URLs, 159

message store, 160–161

session, initializing, 160

JavaScript, 207

javaw, 272

javax.mail.Flags class, 155

javax.mail.Flags.Flag class, 155

javax.mail.Folder class, 125, 155, 161

javax.mail.Message class, 125, 143, 145, 157, 161

javax.mail.Session class, 124, 160

javax.mail.Store class, 125, 160–161

javax.mail.Transport class, 125, 157, 160

javax.swing, 7

javax.swing.event, 220

JButton class, 226

JDialog class, 130, 131, 133, 134

JEditorPane class, 218–219, 220, 226, 234

and JDK 1.4.0, 233

3 6 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Index

P:\010Comp\ApDev\971-3\index.vp
Tuesday, July 08, 2003 9:09:46 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



JFrame class, 109, 145, 158, 172, 221

JProgressBar class, 103, 104, 107, 197

JScrollPane class, 227

JSplitPane class, 154, 158

JTable class, 103, 104, 106, 141, 143, 191

JTextArea class, 154

JTextField class, 226

L
Language, computer

creating your own, 90

interpreting a, 40–41

Least square line, 242

Line of best fit, 242

LinkedHashSet class, 212

Links, retrieving, 203–210

ListSelectionListener, 116, 154

Loan balance, applet to find, 305–309

Loan payments

applet to compute, 278–287

formula for calculating, 278

servlet to compute, 311–315

M
mail.jar file, 164

mailto links, 207

Matcher class, 204

matcher( ) factory method, 204

MaxWD applet, 301–305

Mean, 237–238

formula for finding, 237

and standard deviation, 240–242

Median, 238–239, 240

Memory management, 3–4

Menu class, 271

MenuBar class, 271

MenuItem class, 271

Message

flags, 155, 156

multipart, 163

store, 160–161

Message class, 125, 143, 144, 145, 153, 156, 157, 161

MessageDialog class, 125, 134–141, 157

MessagesTableModel class, 125, 141–145

Method overriding, 5

Mini Browser application, 221–233

and JDK 1.4.0, 233

MiniBrowser class, 221–233

Mode, 239–240

Multipart class, 163

Multitasking, 4

Multithreading, 4–5

N
Networking, 2, 7, 92

NEXT statement (Small BASIC), 83–85

Node, 319

NoModeException, 240, 246

notify( ), 4

notifyAll( ), 4

NumberFormat class, 268, 269, 283

NumberFormatException, 192, 287

O
Object class, 3, 4

Objects vs. simple types dilemma, 2–3

Observable class, 94, 103

Observer software design pattern, 102–103, 119

P
Page anchors, 207, 209

Parser

for the Small BASIC interpreter, 42, 64–69

table-driven, 12

Parser class, 13–14, 25

Parser, recursive descent, 10, 12–38

syntax checking in, 35

Pattern class, 204, 211

Polymorphism, 5–6

POP3 (Post Office Protocol version 3), 123–124, 161

Population, statistical, 236–237

Portability, 2, 6

and the AWT, 7

PRINT statement (Small BASIC), 42, 65, 76–78

Problem solving, AI-based. See AI-based problem solving

processHTMLFrameHyperlinkEvent( ), 233

Production rules of expressions, 12

ProgressRenderer class, 93, 103–104, 116

R
Reference, object, 3, 4

RegData class, 246

RegPay applet, 278–287

conversion to a servlet, 311–315

RegPayS servlet, 311–315

Regression equation, 242–246

Regression line, 242–243

and the correlation coefficient, 243–246

Regular expression

API library, 204

processing, 204–205

syntax, 205

RemBal applet, 305–309

RETURN statement (Small BASIC), 85–87

Robot protocol, 169–170

and Search Crawler, 199–201

robots.txt file, 169–170, 200–201

comments in, 170, 200

run( ) method

for the Download Manager, 98–102

for the Small BASIC interpreter, 73–74, 80, 87

Runnable interface, 94, 98, 194, 196

Runtime system, Java, 40, 42

I n d e x 3 6 9

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Index

P:\010Comp\ApDev\971-3\index.vp
Tuesday, July 08, 2003 9:09:47 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



S
Sample, statistical, 236–237

SBasic class, 42

constructor, 70–71

Scaling data, 250

Screen scraping, 216

Search

engines, 168, 216

space, 319

Search(es), AI-based

and backtrack stacks, 327, 330, 336, 338, 349

breadth-first, 336–338, 339

depth-first, 325–336, 339

evaluating, 322

exhaustive, 321, 348, 356

to find the “optimal” solution, 356–361

hill-climbing, 340–346

least-cost, 346–348

using node removal, 348, 350–356

using path removal, 348–350

Search Crawler application, 168, 171–215

SearchCrawler class, 172–214

code listing, 172–190

compiling and running, 214

Security, 6

and e-mail, 122

servlet.jar file, 310

Servlets, 278

converting applets to, 310, 311–315

creating, 310–311

Session class, 124, 160

setEditable( ), 154, 218, 227, 269, 284

setMaximumFractionDigits( ), 269

Simple types vs. objects dilemma, 2–3

Small BASIC, 41–42

assignment in, 75–76

expressions, 64–65

keywords, 72–73

using, 87–90

Small BASIC interpreter

code listing, 42–63

expression parser, 64–69

interpreter portion of , 70–87

SMTP (Simple Mail Transfer Protocol), 123, 157

Solution path, 319

Stack collection class, 83, 76, 327

Standard deviation, 240–242

formula for finding, 241

StatApplet, 274–276

Statistics

applet using the Stats and Graphs classes, 274–276

application using the Stats and Graphs classes,

263–274

overview of basic concepts of, 236–246

Stats class, 237, 246–249

StatsWin class, 263–271

Store class, 125, 160–161

Strings, parsing, 203–206

StringTokenizer class, 16, 276

Sun Microsystems, 310

Swing, 93

and GUIs, 7, 93, 236

and HTML, 218

SwingUtilities.invokeLater( ), 160

Synchronization, 4

synchronized keyword, 4

System.arraycopy( ), 239

T
TableCellRenderer interface, 103, 104

Terminal node, 319

TextArea class, 269, 272

THEN statement (Small BASIC), 82

Thread, 4

Thread class, 118, 194

Tokens, 13

internal and external representations of Small

BASIC, 65

Tomcat servlet development environment, 310–311, 314

toString( ), 3

Transport class, 125, 156, 157, 160

TreeMap collection class, 80, 81

Types

data, 2–3

simple, 3

wrappers, 3

U
URL class, 98, 198–199, 212, 219, 228, 229, 230

URLName class, 161

URLs

absolute, 207, 208

fully qualified, 207, 208

relative, 207–208

“www” portion of, 203

User-agent, 170

V
Variables, dependent and independent, 237

Variance, 240–242

formula for finding, 241

W
wait( ), 4

Web browser(s)

and applets, 7–8

application, 221–233

and the Robot protocol, 170

Web crawler

fundamentals, 168–169

and the Robot protocol, 169–170

Search Crawler example of, 168, 171–215

uses for, 168, 215–216

Web page

anchors, 207, 209

downloading, 202

Web programming and Java, 6, 8

See also Internet

WindowAdapter class, 115, 154, 190, 257

WindowListener interface, 257

3 7 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Index

P:\010Comp\ApDev\971-3\index.vp
Tuesday, July 08, 2003 9:09:47 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company Australia Pty. Ltd.

TEL +61-2-9900-1800

FAX +61-2-9878-8881

http://www.mcgraw-hill.com.au

books-it_sydney@mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Ltd.

TEL +905-430-5000

FAX +905-430-5020

http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA

(Excluding South Africa)

McGraw-Hill Hellas

TEL +30-210-6560-990

TEL +30-210-6560-993

TEL +30-210-6560-994

FAX +30-210-6545-525

MEXICO (Also serving Latin America)

McGraw-Hill Interamericana Editores S.A. de C.V.

TEL +525-117-1583

FAX +525-117-1589

http://www.mcgraw-hill.com.mx

fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)

McGraw-Hill Book Company

TEL +65-6863-1580

FAX +65-6862-3354

http://www.mcgraw-hill.com.sg

mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045

robyn_swanepoel@mcgraw-hill.com

SPAIN

McGraw-Hill/Interamericana de España, S.A.U.

TEL +34-91-180-3000

FAX +34-91-372-8513

http://www.mcgraw-hill.es

professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,

EASTERN, & CENTRAL EUROPE

McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224

http://www.mcgraw-hill.co.uk

computing_europe@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:

McGraw-Hill/Osborne

TEL +1-510-420-7700

FAX +1-510-420-7703

http://www.osborne.com

omg_international@mcgraw-hill.com

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /
Blind Folio 371

P:\010Comp\ApDev\971-3\index.vp
Tuesday, July 08, 2003 9:09:47 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



More from Herb Schildt—
the World’s #1 Programming Author!

0-07-213485-2

0-07-222680-3

Herb Schildt is an authority on the C, C++, Java, and C# programming languages, and 
a master Windows programmer. His programming books have sold more than three 
million copies worldwide and have been translated into all major foreign languages. 
From Beginner’s Guides to Complete References, Herb’s books fully cover today’s most 
important programming languages.

For a complete listing of titles by Herb Schildt, 
please visit www.osborne.com

O s b o r n e  d e l i v e r s  r e s u lt s ! ]

0-07-222240-7

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /
Blind Folio 372

P:\010Comp\ApDev\971-3\index.vp
Tuesday, July 08, 2003 9:09:52 AM

Color profile: Generic CMYK printer profile
Composite  Default screen


	The Art of Java
	The Art of Java
	Copyright
	Contents
	About the Authors
	Preface
	What¡¯s Inside
	Knowledge of Java Is Assumed
	A Team Effort
	Don¡¯t Forget: Code on the Web
	More From Herb Schildt
	More From James Holmes


	Chapter 1 The Genius of Java
	Simple Types and Objects: The Right Balance
	Memory Management Through Garbage Collection
	A Wonderfully Simple Multithreading Model
	Fully Integrated Exceptions
	Streamlined Support for Polymorphism
	Portability and Security Through Bytecode
	The Richness of the Java API
	The Applet
	The Continuing Revolution

	Chapter 2 A Recursive-Descent Expression Parser
	Expressions
	Parsing Expressions: The Problem
	Parsing an Expression
	Dissecting an Expression
	A Simple Expression Parser
	Understanding the Parser

	Adding Variables to the Parser
	Syntax Checking in a Recursive- Descent Parser
	A Calculator Applet
	Some Things to Try

	Chapter 3 Implementing Language Interpreters in Java
	What Computer Language to Interpret?
	An Overview of the Interpreter
	The Small BASIC Interpreter
	The Small BASIC Expression Parser
	Small BASIC Expressions
	Small BASIC Tokens

	The Interpreter
	The InterpreterException Class
	The SBasic Constructor
	The Keywords
	The run( ) Method
	The sbInterp( ) Method
	Assignment
	The PRINT Statement
	The INPUT Statement
	The GOTO Statement
	The IF Statement
	The FOR Loop
	The GOSUB
	The END Statement

	Using Small BASIC
	More Small BASIC Sample Programs

	Enhancing and Expanding the Interpreter
	Creating Your Own Computer Language

	Chapter 4 Creating a Download Manager in Java
	Understanding Internet Downloads
	An Overview of the Download Manager
	The Download Class
	The Download Variables
	The Download Constructor
	The download( ) Method
	The run( ) Method
	The stateChanged( ) Method
	Action and Accessor Methods

	The ProgressRenderer Class
	The DownloadsTableModel Class
	The addDownload( ) Method
	The clearDownload( ) Method
	The getColumnClass( ) Method
	The getValueAt( ) Method
	The update( ) Method

	The DownloadManager Class
	The DownloadManager Variables
	The DownloadManager Constructor
	The verifyUrl( ) Method
	The tableSelectionChanged( ) Method
	The updateButtons( ) Method
	Handling Action Events

	Compiling and Running the Download Manager
	Enhancing the Download Manager

	Chapter 5 Implementing an E-mail Client in Java
	E- mail Behind the Scenes
	POP3
	IMAP
	SMTP
	The General Procedure for Sending and Receiving E- mail

	The JavaMail API
	An Overview of Using JavaMail

	A Simple E- mail Client
	The ConnectDialog Class
	The DownloadingDialog Class
	The MessageDialog Class
	The MessagesTableModel Class
	The EmailClient Class

	Compiling and Running the E- mail Client
	Expanding Beyond the Basic E- mail Client

	Chapter 6 Crawling the Web with Java
	Fundamentals of a Web Crawler
	Adhering to the Robot Protocol
	An Overview of the Search Crawler
	The SearchCrawler Class
	The SearchCrawler Variables
	The SearchCrawler Constructor
	The actionSearch( ) Method
	The search( ) Method
	The showError( ) Method
	The updateStats( ) Method
	The addMatch( ) Method
	The verifyUrl( ) Method
	The isRobotAllowed( ) Method
	The downloadPage( ) Method
	The removeWwwFromUrl( ) Method
	The retrieveLinks( ) Method
	The searchStringMatches( ) Method
	The crawl( ) Method

	Compiling and Running the Search Web Crawler
	Web Crawler Ideas

	Chapter 7 Rendering HTML with Java
	Rendering HTML with JEditorPane
	Handling Hyperlink Events
	Creating a Mini Web Browser
	The MiniBrowser Class
	The MiniBrowser Variables
	The MiniBrowser Constructor
	The actionBack( ) Method
	The actionForward( ) Method
	The actionGo( ) Method
	The showError( ) Method
	The verifyUrl( ) Method
	The showPage( ) Method
	The updateButtons( ) Method
	The hyperlinkUpdate( ) Method

	Compiling and Running the Mini Web Browser
	HTML Renderer Possibilities

	Chapter 8 Statistics, Graphing, and Java
	Samples, Populations, Distributions, and Variables
	The Basic Statistics
	The Mean
	The Median
	The Mode

	Variance and Standard Deviation
	The Regression Equation
	The Correlation Coefficient

	The Entire Stats Class
	Graphing Data
	Scaling Data
	The Graphs Class
	The Graphs final and Instance Variables
	The Graphs Constructor
	The paint( ) method
	The bargraph( ) Method
	The scatter( ) Method
	The regplot( ) Method

	A Statistics Application
	The StatsWin Constructor
	The itemStateChanged( ) Handler
	The actionPerformed( ) Method
	The shutdown( ) Method
	The createMenu( ) Method
	The DataWin Class
	Putting Together the Pieces

	Creating a Simple Statistical Applet
	Some Things to Try

	Chapter 9 Financial Applets and Servlets
	Finding the Payments for a Loan
	The RegPay Fields
	The init( ) Method
	The actionPerformed( ) Method
	The paint( ) Method
	The compute( ) Method

	Finding the Future Value of an Investment
	Finding the Initial Investment Required to Achieve a Future Value
	Finding the Initial Investment Needed for a Desired Annuity
	Finding the Maximum Annuity for a Given Investment
	Finding the Remaining Balance on a Loan
	Creating Financial Servlets
	Using Tomcat
	Converting the RegPay Applet into a Servlet
	The RegPayS Servlet

	Some Things to Try

	Chapter 10 AI-Based Problem Solving
	Representation and Terminology
	Combinatorial Explosions
	Search Techniques
	Evaluating a Search

	The Problem
	A Graphic Representation

	The FlightInfo Class
	The Depth- First Search
	An Analysis of the Depth- First Search

	The Breadth- First Search
	An Analysis of the Breadth- First Search

	Adding Heuristics
	The Hill- Climbing Search
	An Analysis of Hill Climbing
	The Least- Cost Search
	An Analysis of the Least- Cost Search

	Finding Multiple Solutions
	Path Removal
	Node Removal

	Finding the ¡° Optimal¡± Solution
	Back to the Lost Keys

	Index




